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Abstract. We present a declarative language for compositional specification of con-
tracts governing the exchange of resources. It extends Eber and Peyton Jones’s declara-
tive language for specifying financial contracts [JE03] to the exchange of money, goods
and services amongst multiple parties, and it complements McCarthy’s Resources, Events
and Agents (REA) accounting model [McC82] with a view-independent formal contract
model that supports definition of user-defined contracts, automatic monitoring under
execution, and user-definable analysis of their state before, during and after execution.
We provide several realistic examples of commercial contracts and their analyses. A vari-
ety of (real) contracts can be expressed in such a fashion as to support their integration,
management and analysis in an operational environment that registers events.

The language design is driven by both domain considerations and semantic language
design methods: A contract denotes a set of traces of events, each of which is an al-
ternative way of concluding the contract successfully, which gives rise to a CSP-style
[BHR84,Hoa85] denotational semantics. The denotational semantics drives the devel-
opment of a sound and complete small-step operational semantics, where a partially
executed contract is represented as a (full) contract that represents the remaining con-
tractual commitments. This operational semantics is then systematically refined in two
stages to an instrumented operational semantics that reflects the bookkeeping practice of
identifying the specific contractual commitment a particular event matches at the time
the event occurs, as opposed to delaying this matching until the contract is concluded.

1 Introduction

When entrepreneurs enter contractual relationships with a large number of other parties, each
with possible variations on standard contracts, they are confronted with the interconnected
problems of specifying contracts, monitoring their execution for performance1, analyzing their
ramifications for planning, pricing and other purposes prior to and during execution, and
integrating this information with accounting, workflow management, supply chain management,
production planning, tax reporting, decision support etc.

1.1 Contract Management and Information Systems

Judging by publically available information, support for contracts in most present-day enter-
prise resource planning (ERP) systems is delegated to functional silos, specialized (sub)systems
supporting a fixed catalogue of predefined contracts for specific application domains; e.g. cred-
itor/debitor modules in ERP systems such as Microsoft Business Solutions’ Navision 3.60 and

1 Performance in contract lingo refers to compliance with the promises (contractual commitments)
stipulated in a contract; nonperformance is also termed breach of contract.
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Axapta [nav] for simple commercial contracts, SAP’s specialized contract management subsys-
tems for particular industries such as the beverage industry [sap], or independent systems for
managing portfolios of financial contracts such as Simcorp’s IT/2 system for managing trea-
suries [sim]. Common to these systems seems to be that they support a fixed and limited set of
contract templates specialized to a particular application domain and lack flexible integration
with other (parts of) enterprise systems. A notable exception is LexiFi [lex] whose products for
complex financial derivatives incorporate some of the ideas pioneered in Peyton Jones, Eber,
and Seward’s research in financial engineering [JES00,JE03].

In the absence of support for user-definable (custom) contracts users are forced to adhere
to stringent business processes or end up engaging in “off-book” activities, which are not easily
tracked or integrated; e.g. oral or written contracts in natural language. Furthermore, devel-
opment of new specialized contract modules incurs considerable development costs with little
possibility for supporting efficient division of labor in a multi-stage development model where
a software vendor produces a solution framework, partners with domain expertise specialize
(instantiate) the framework to particular industries, and customers (individual companies)
configure and deploy specialized systems for their end users.

1.2 Problems with Informal Contract Management

Typical problems that can arise in connection with informal modeling and representation of
contracts and their execution include the following:

1. Disagreement on what a contract actually requires. Many contract disputes involve a dis-
agreement between the parties about what the contract requires, and many rules of contract
law pertain to interpretation of terms of a contract that are vague or ambiguous.

2. Agreement on contract, but disagreement on what events have actually happened (event
history); e.g. buyer of goods claims that payment has been made, but seller claims not to
have received it (“check is in the mail” phenomenon).

3. Agreement on contract and event history, but disagreement on remaining contractual obli-
gations; e.g., seller applies payment by buyer to one of several commitments buyer has, but
buyer intends it for another commitment.

4. Breach or malexecution of contract: A party overlooks a deadline on a commitment and is
in breach of contract (missed payment deadline) or incurs losses (deadline on lucrative put
or call option overlooked).

5. Entering bad or undesirable contracts/missed opportunities; e.g., a company enters a con-
tract or refrains from doing so because it cannot quickly analyze its value and risk.

6. Coordination of contractual obligations with production planning and supply chain man-
agement; e.g., company enters into an otherwise lucrative contract, but overlooks that
it does not have the requisite production capacity due to other, preexisting contractual
obligations.

7. Impossibility, slowness or costliness in evaluating state of company affairs; e.g., bad business
developments are detected late, or high due diligence costs affect chances and price of selling
company.

Anecdotal evidence suggests that costs associated with these problems can be considerable.
Eber estimates that a major French investment bank has costs of about 50 mio. Euro per year
attributable to 1 and 4 above, with about half due to legal costs in connection with contract
disputes and the other half due to malexecution of financial contracts [Ebe02].

In summary, capturing contractual obligations precisely and managing them conscientiously
is important for a company’s planning, evaluation, and reporting to management, shareholders,
tax authorities, regulatory bodies, potential buyers, and others.
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1.3 A Domain-Specific Language for Contracts

ERP systems used today capture the activities of an enterprise based on the principles of
double-entry bookkeeping. Since the integration of this with subsystems for handling contract
execution is characterized by ad hoc, makeshift solutions, it is interesting to consider if a specifi-
cation language can be designed and integrated with the data model in which historic activities
of the enterprise are collected. We argue that a declarative domain-specific (specification) lan-
guage (DSL) for compositional specification of commercial contracts (defining contracts by
combining subcontracts in various, well-defined ways) with an associated precise operational
semantics is ideally suited to alleviating the above problems.2

Note that contracts are not only put to a single use as programs are, whose sole use usually
consists of execution. They are subjected to monitoring, which can be considered to be the
standard semantics for contracts, plus various user-defined analyses.

In this sense contract specifications are more like intelligent data that are subjected to
various uses. This is in contrast to programs that are exclusively executed.

As a consequence, both the syntactic structure of contract specifications and the ability of
limiting their expressive (programming) power are of particular significance in their design.

We believe the DSL facilitates multi-stage development as the central interface between
framework developer and partner:

1. The framework developer provides the DSL, which allows specification of an infinity of
contracts in a domain-oriented fashion, but without (too much) prejudice towards specific
industries; delivers a run-time environment for managing execution of all definable con-
tracts; and provides a number of useful general-purpose standard contracts. Furthermore,
the framework developer provides a language (or library) and run-time system for defining
contract analyses, and defines a number of standard analyses applicable to all definable
contracts; e.g., next-point-of-interest computation for alerting users – human or computer
– to commitments that require action (sending payment, making deliveries) or computation
of accounts receivable and accounts payable for financial reporting.

2. The partner defines a collection of contract templates using the DSL for use in a par-
ticular industry and adds relevant industry-specific analyses using the vendor’s analysis
language. No general-purpose low-level programming expertise is required, but primarily
domain knowledge and the ability to formalize it in the DSL and to express specialized
analysis functions in the vendor’s analysis language. The partner may leave some aspects
(parameters) of the specialized system open for final configuration at the end user company.

3. The customer organization receives its system from the partner and configures and deploys
it for use by its end users.

Note that the DSL provides encapsulation and division of labor in this pipeline: Discussions
between end users and partners are performed in terms of domain concepts close to the DSL,
but the end user does not need to know the DSL itself. Discussions between partners and the
framework provider on design, functionality, limitations are in terms of the design and semantics
of the DSL, not in terms of its underlying (general-purpose) implementation language; in
particular, specific implementation choices by the framework developer are unobservable by the
partners. The DSL encapsulates its implementation and thus facilitates upgrading of software
throughout the pipeline.

1.4 Contributions

We make the following contributions in this article:
2 Please note that our language is rendered in ordinary linear syntax, but we do not intend to limit

the scope of the term ’language’ to specifying linear sequences of characters only, but to include
graphical objects and the like.
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– We define a contract language for multi-party commercial contracts with iteration and first-
order recursion. They involve explicit agents and transfers of arbitrary resources (money,
goods and services, or even pieces of information), not only currencies. Our contract lan-
guage is stratified into a pluggable base language for atomic contracts (commitments) and
a combinator language for composing commitments into structured contracts.

– We provide a natural contract semantics based on an inductive definition for when a
trace—a finite sequence of events—constitutes a successful (“performing”) completion of a
contract. This induces a trace-based denotational semantics, which compositionally maps
contracts to trace sets.

– We systematically develop three operational semantics in a stepwise fashion, starting from
the denotational semantics:
1. A (sound and complete) reduction semantics for monitoring contract execution dur-

ing arrival of events. It represents the residual obligations of a contract after an event
as a bona fide (full) contract specification and defers matching of events to specific
commitments until the whole contract has completed. It can be implemented by back-
tracking where events are tentatively matched to the first suitable commitment and
backtracking is performed if that choice turns out to be wrong later on.

2. A nondeterministic reduction semantics for eager matching, where matching decisions
are made as events arrive and cannot be backtracked. Eager matching corresponds to
bookkeeping practice, but leads to nondeterminacy in the case multiple commitments
in a contract can be matched by the same event; in particular, the parties to a contract
may perform different matches and may end up disagreeing on the contract’s residual
obligations.

3. An instrumentation of the eager matching semantics that equips events with explicit
control information that routes the event unambiguously to the particular commitment
it is to be matched with. This yields an eager matching semantics with a deterministic
reduction semantics and thus ensures that all parties to a contract agree on the residual
contract if they agree on the prior contract state and on which event (including its
routing information) has happened.

– We validate applicability of our language by encoding a variety of existing contracts in it,
and illustrate analyzability of contracts by providing examples of compositional analysis.

The denotational semantics has been an instrumental methodological tool in deriving a
small-step semantics.

Our work builds on a previous language design by Andersen and Elsborg [AE03] and is
inspired by:

– Peyton-Jones and Eber’s language for compositional specification of financial contracts
[JES00], which has been the original impetus for the language design approach we have
taken;

– McCarthy’s Resources-Events-Agents (REA) accounting model [McC82], which has pro-
vided the ontological justification for modeling commercial contracts as being built from
atomic commitments stipulating transfers (economic events) of scarce resources between
between agents (and nothing else);

– Hoare’s Calculus of Sequential Processes (CSP), specifically its view-independent event
synchronization model, and its associated trace theoretic semantics [BHR84,Hoa85].

See Section 7 for a more detailed comparison with this and other related work.

2 Modeling Commercial Contracts

A contract is an agreement between two or more parties which creates obligations to do or
not do the specific things that are the subject of that agreement. A commercial contract is
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a contract whose subject is the exchange of scarce resources (money, goods, and services).
Examples of commercial contracts are sales orders, service agreements, and rental agreements.
Adopting terminology from the REA accounting model [McC82] we shall also call obligations
commitments and parties agents.

It is worth noticing that contracts may be express or implied. When two parties decide
to exchange goods, more often than not there is no express contract. There is, however, an
implied contract of the form of “Party A expects to pay X in exchange for party B’s provision
of goods Y ”. Usually when no express contract is present, the contractual obligations are taken
from common practice, general terms of trade, or legislation. Thus the term contract should
be understood in a broader sense as a structure that governs any trade or production even if
it is not verbal.

2.1 Contract Patterns

In its simplest form a contract commits two contract parties to an exchange of resources such
as goods for money or services for money; that is to a pair of transfers of resources from one
party to the other, where one transfer is in consideration of the other.

The sales order template in Figure 1 commits the two parties (seller, buyer) to a pair of
transfers, of goods from seller to buyer and of money from buyer to seller. Note that both
commitments are predicated on when they must be satisfied: seller may deliver any time,
but must do so by a given date, and buyer must pay at the time delivery happens. We can
think of the sales order as being composed sequentially of two atomic contracts: the seller’s
commitment to deliver goods, followed by the buyer’s commitment to pay for them. If goods
are not delivered there is no commitment by buyer to pay anything, and only seller is in
breach of contract. In a barter (goods for goods or goods for services) the commitments on each
party may be composed concurrently ; that is, both commitments are unconditional and must
be satisfied independently of each other. If no party delivers on time and no explicit provision
for this is made in the contract, both parties may be in breach of contract. Many commercial
contracts are of this simple quid-pro-quo kind, but far from all. Consider the legal services
agreement template in Figure 2. Here commitments for rendering of a monthly legal service
are repeated, and each monthly service consists of a standard service part and an optional
service part. More generally, a contract may allow for alternative executions, any one of which
satisfies the given contract.

We can discern the following basic contract patterns for composing commercial contracts
from subcontracts (a subcontract is a contract used as part of another contract):

– a commitment stipulates the transfer of a resource or set of resources between two parties;
it constitutes an atomic contract ;

– a contract may require sequential execution of subcontracts;
– a contract may require concurrent execution of subcontracts, that is execution of all sub-

contracts, where individual commitments may be interleaved in arbitrary order;
– a contract may require execution of one of a number of alternative subcontracts;
– a contract may require repeated execution of a subcontract.

Furthermore, commitments and, more generally, contracts usually carry temporal constraints,
which stipulate when the actual resource transfers must happen.
In the remainder of this report we shall explore a declarative contract specification language
based on these contract patterns.

3 Compositional Contract Language

In this section we present a core contract specification language and its properties. All proofs
are relegated to Appendix A.

The language should satisfy the following design criteria:
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Fig. 1 Agreement to Sell Goods
Section 1. (Sale of goods) Seller shall sell and deliver to buyer (description of goods) no later than

(date).
Section 2. (Consideration) In consideration hereof, buyer shall pay (amount in dollars) in cash on

delivery at the place where the goods are received by buyer.
Section 3. (Right of inspection) Buyer shall have the right to inspect the goods on arrival and, within

(days) business days after delivery, buyer must give notice (detailed-claim) to seller of any claim
for damages on goods.

Fig. 2 Agreement to Provide Legal Services
Section 1. The attorney shall provide, on a non-exclusive basis, legal services up to (n) hours per

month, and furthermore provide services in excess of (n) hours upon agreement.
Section 2. In consideration hereof, the company shall pay a monthly fee of (amount in dollars) before

the 8th day of the following month and (rate) per hour for any services in excess of (n) hours 40
days after the receival of an invoice.

Section 3. This contract is valid 1/1-12/31, 2004.

– Contracts should be specifiable compositionally, reflecting the contract composition pat-
terns of Section 2.1.

– The language should separate contract composition (contract language) from definition of
the atomic commitments (base language), including their temporal constraints; this is to
make sure that the design can accommodate changes and extensions to the base language
without simultaneously forcing substantial changes in the contract language.

– The language should obey good language design principles such as naming and parameter-
ization, orthogonality and compositional semantics.

– The language should be expressive enough to represent partially executed contracts as (full)
contracts and have a reduction semantics that reduces a contract under arrival of an event
to a contract that represents the residual obligations. By representing partially executed
contracts as contracts any contract analysis will also be applicable to partially executed
contracts.

– The reduction semantics should be a good basis for ’control’ of execution; in particular,
for matching of events against the specific (intended) commitment in a contract that it
satisfies.

3.1 Syntax

Our contract language CP is defined inductively by the inference system for deriving judgements
of the forms Γ ;∆ ` c : Contract and ∆ ` D : Γ . Here Γ and ∆ range over maps from identifiers
to contract template types and to base types, respectively. The map extension operator on maps
is defined as follows:

(m⊕m′)(x) =
{

m′(x) if x ∈ domain(m′)
m(x) otherwise

The language is built on top of a a base structure of domains (A,R, T ) of agents, resources,
time where (T ,≤T ) is totally ordered. It consists of a typed base language of expressions P,
for which we assume the existence of a set of valid typing judgements ∆ ` a : τ for expressions
a, which include variables X and constants for each element in the base structure. Types
τ include Agent,Resource,Time, which denote (A,R, T ), respectively, as well as Boolean for
predicates (Boolean expressions). The expression language has a notion of substitution b[a/X]3

3 We use the general convention that metavariables in boldface denote vectors (sequences) of what
the metavariable denotes.
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and a denotation function Q[[∆ ` a : τ ]] that maps valid typing judgements to elements of
domains Dom[[∆ → τ ]]. (See Figure 6 for a brief description of the thus denoted domains.)
The only properties we shall assume are that substitution is compatible with judgements:
if ∆ ⊕ X : τ ` b : τb and ∆ ` a : τ then ∆ ` b[a/X] : τb where a = a1 . . . an and
X = X1 . . . Xn for some n ≥ 0; and that the denotation function is compositional; that is,
Q[[∆ ` b[a/X] : τ ]]δ = Q[[∆ ` b : τ ]]δ⊕{Xi 7→Q[[∆`ai:τi]]

δ}i .
We use metavariable P for Boolean expressions and abbreviate ∆ ` P : Bool to ∆ ` P .

For brevity and readability, we also abbreviate Q[[∆ ` a : τ ]] to Q[[a]], leaving ∆ and τ to be
understood from the context. Finally, we write δ |= P for Q[[P ]]δ = true.

The language P provides the possibility of referring to observables [JES00,JE03]. We shall
introduce suitable base language expressions on an ad hoc basis in our examples for illustrative
purposes.

Fig. 3 Syntax for contract specifications

Γ ; ∆ ` Success : Contract Γ ; ∆ ` Failure : Contract

Γ (f) = τ → Contract ∆ ` a : τ

Γ ; ∆ ` f(a) : Contract

∆′ = ∆⊕ {A1 : Agent, A2 : Agent, R : Resource, T : Time}
Γ ; ∆′ ` c : Contract
∆′ ` P : Boolean

Γ ; ∆ ` transmit(A1, A2, R, T | P ). c : Contract

Γ ; ∆ ` c1 : Contract Γ ; ∆ ` c2 : Contract

Γ ; ∆ ` c1 + c2 : Contract

Γ ; ∆ ` c1 : Contract Γ ; ∆ ` c2 : Contract

Γ ; ∆ ` c1 ‖ c2 : Contract

Γ ; ∆ ` c1 : Contract Γ ; ∆ ` c2 : Contract

Γ ; ∆ ` c1; c2 : Contract

Γ = {fi 7→ τi1 × . . .× τini → Contract}m
i=1

Γ ; ∆⊕ {Xi1 : τi1, . . . , Xini : τini} ` ci : Contract

∆ ` {fi[Xi] = ci}m
i=1 : Γ

∆ ` {fi[Xi] = ci}m
i=1 : Γ Γ ; ∆ ` c : Contract

∆ ` letrec {fi[Xi] = ci}m
i=1 in c : Contract

The context-free structure of contracts directly reflects the contract patterns we discussed
in Section 2.1:

c ::= Success | Failure | f(a) | transmit(A1, A2, R, T | P ). c | c1 + c2 | c1 ‖ c2 | c1; c2

Success denotes the trivial or (successfully) completed contract: it carries no obligations on
anybody. Failure denotes the inconsistent or failed contract; it signifies breach of contract or
a contract that is impossible to fulfill. The environment D = {fi[Xi] = ci}m

i=1 contains named
contract templates where Xi is a vector of formal parameters for use in the embedded contract
ci. A contract template needs to be instantiated with actual arguments from the base language.
(The ni on the τ indicates that different contracts may have a different number of formal
parameters.) For a Boolean predicate P the contract expression transmit(A1, A2, R, T | P ). c
represents a contract where the commitment transmit(A1, A2, R, T | P ) must be satisfied first.
Note that A1, A2, R, T are binding variable occurrences whose scope is P and c. The commit-
ment must be matched by a (transfer) event e = transmit(v1, v2, r, t) of resource r from agent
v1 to agent v2 at time t where P (v1, v2, r, t) holds. After matching, the residual contract is c
in which A1, A2, R, T are bound to v1, v2, r, t, respectively. In this fashion the subsequent con-
tractual obligations expressed by c may depend on the actual values in event e. The contract
combinators ·+ ·, · ‖ · and ·; · compose subcontracts according to the contract patterns we have
discerned: by alternation, concurrently, and sequentially, respectively. A (contract) context is a
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finite set of named contract template declarations of the form f(X) = c. By using the contract
instantiation (or contract application) construct f(a) contract templates may be (mutually)
recursive, which, in particular, lets us capture repetition of subcontracts. Contract template
definitions occur only at top level.

Since the contract language CP is statically typed its syntax is formally defined by the
inference system in Figure 3. If top-level judgement ∆ ` letrec D in c : Contract is derivable
we shall say that c is well-formed in context D. Henceforth we shall assume that all contracts
are well-defined, where D may be implicitly understood.

What we call contracts should justly be called precontracts as they do not necessarily
satisfy the legal requirement for validity. In particular, Success, Failure and any expression that
obligates only one agent are not judicially valid contracts. Following [JES00,JE03], we shall
freely use the term contract, however. Note that consideration (reciprocity in REA terms) is
not built into our language as a syntactic construct. This allows flexible definitions of contracts
where commitments are not in a simple, syntactically evident one-to-one relation, and it allows
different, user-defined notions of consideration to be applied as analyses to the same language.

In the following we shall adopt the convention that A1, A2, R, T must not be bound in
environment ∆. If a variable from ∆ or any expression a only involving variables bound
in ∆ occurs as an argument of a transmit, we interpret this as an abbreviation; for exam-
ple, transmit(a,A2, R, T | P ). c abbreviates transmit(A1, A2, R, T | P ∧A1 = a). c where A1 is
a new (agent-typed) variable not bound in ∆ and different from A2, R and T . We abbreviate
transmit(A1, A2, R, T | P ).Success to transmit(A1, A2, R, T | P ).

The contract from Figure 1 is encoded in Figure 4, and the contract in Figure 2 is treated
in depth in Sections 4 and 5.

Fig. 4 Specification of Agreement to Sell Goods
letrec

nonconforming [seller, buyer, goods, payment, days, t1, notice] =

transmit (buyer, seller, notice, T |

T < t1 + days d and #(goods,broken,t1) = 1).

transmit (seller, buyer, payment/2, T’ | T’ < T + days d).

sale [seller, buyer, goods, payment, t1, days, notice] =

transmit (seller, buyer, goods, T | T < t1).

transmit (buyer, seller, payment, T’ | T’ < t1).

(Success + nonconforming (seller, buyer, goods, days, T’, notice))

in

sale ("Furniture maker", "Me", "Chair", 40, 2004.7.1, 8, "Chair broken")

3.2 Event Traces and Contract Satisfaction

A contract specifies a set of alternative performing event sequences (contract executions), each
of which satisfies the obligations expressed in the contract and concludes it. In this section we
make these notions precise for our language.

Recall that our base structure is a tuple (R, T ,A) of sets of resources R, agents A and
a totally ordered set (T ,≤T ) of dates (or time points). Whenever convenient, we will extend
base structures with other sets for other types, as needed. A (transfer) event e is a term
transmit(v1, v2, r, t), where v1, v2 ∈ A, r ∈ R and t ∈ T . An (event) trace s is a finite sequence
of events that is chronologically ordered; that is, for s = e1 . . . en the time points in e1 . . . en

occur in nondescending order. We adopt the following notation: 〈〉 denotes the empty sequence;
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a trace consisting of a single event e is denoted by e itself; concatenation of traces s1 and s2

is denoted by juxtaposition: s1s2; we write (s1, s2)  s if s is an interleaving of the events
in traces s1 and s2; we write X for the vector X1, . . . , Xk with k ≥ 0 and where k can be
deduced from the context; we write c[v/X], where v = v1 . . . vn and X = X1 . . . Xn for some
n ≥ 0, for the result of simultaneously substituting elements vi for the all free occurrences of
the corresponding Xi in c. (Free and bound variables are defined as expected.)

We are now ready to specify when a trace satisfies a contract, i.e. gives rise to a performing
execution of the contract. This is done inductively by the inference system for judgements
δ′ `δ

D s : c in Figure 5, where D = {fi[Xi] = ci}m
i=1 is a finite set of named contract templates

and δ is a finite set of bindings of variables to elements (values of a domain) of the given
base structure. A derivable judgement δ′ `δ

D s : c expresses that event sequence s satisfies—
successfully executes and concludes—contract c in an environment where contract templates
are defined as in D, δ is the top-level environment for both D and c, and δ′ is a local environment
for additional free variables in c. Conversely, if δ′ `δ

D s : c is not derivable then s does not satisfy
c for given D, δ, δ′. The condition δ ⊕ δ′′ |= P in the third rule stipulates that P , with free
variables bound as in δ ⊕ δ′, must be true in the base language for an event to match the
corresponding commitment.

Fig. 5 Contract satisfaction

δ′ `δ
D 〈〉 : Success

X 7→ v `δ
D s : c (f(X) = c) ∈ D, v = Q[[a]]δ⊕δ′

δ′ `δ
D s : f(a)

δ ⊕ δ′′ |= P δ′′ `δ
D s : c (δ′′ = δ′ ⊕ {X 7→ v})

δ′ `δ
D transmit(v) s : transmit(X|P ). c

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2 (s1, s2) s

δ′ `δ
D s : c1 ‖ c2

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2

δ′ `δ
D s1s2 : c1; c2

δ′ `δ
D s : c1

δ′ `δ
D s : c1 + c2

δ′ `δ
D s : c2

δ′ `δ
D s : c1 + c2

3.3 Denotational Semantics

A denotational semantics maps contract specifications compositionally into a domain of math-
ematical objects; that is, by induction on the syntax (inference tree) of contract expressions
as given by the inference rules of Figure 3. A denotational semantics supports reasoning by
structural induction on the syntax. In particular, any subcontract of a contract can be replaced
by any other subcontract with the same denotation without changing the behavior of the whole
contract.

The satisfaction relation relates each contract to a set of traces. We can use that to define
the extension of a contract c to be the set of its performing executions: E [[letrec D in c]]δ = {s :
`δ

D s : c}. This, however, is not a denotational semantics since it is not compositional. Turning
it into a compositional definition we arrive at the semantics given in Figure 7. Note that each
contract denotes a trace set, and the meaning of a compound contract can be explained in
terms of a mathematical operation on the trace sets denoted by its constituent subcontracts
without any reference to the actual syntax of the latter.

The presence of recursive contract definitions requires domain theory; see e.g. Winskel
[Win93]. Briefly, each type in our language is mapped to a complete partial order (cpo); that
is, a set equipped with a partial order where each directed subset has a least upper bound
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Fig. 6 Domains for CP

Dom[[Boolean]] = ({true, false}, =)

Dom[[Agent]] = (A, =)

Dom[[Resource]] = (R, =)

Dom[[Time]] = (T , =)

E = A×A×R× T
Tr = (E∗, =)

Dom[[Contract]] = (2Tr ,⊆)

Dom[[τ1 × . . .× τn → Contract]] = Dom[[τ1]]× . . .×Dom[[τn]] → Dom[[Contract]]

Dom[[Γ ]] = {{fi 7→ vi}m
i=1 | vi ∈ Dom[[τi1]]× . . .×Dom[[τini ]] → Dom[[Contract]]}

where Γ = {fi 7→ τi1 × . . .× τini → Contract}m
i=1

Dom[[∆]] = {{Xi 7→ vi}m
i=1 | vi ∈ Dom[[τi]]}

where ∆ = {Xi : τi}m
i=1

Dom[[Γ ; ∆ ` c : Contract]] = Dom[[Γ ]]×Dom[[∆]] → Dom[[Contract]]

Fig. 7 Denotational semantics

C[[Success]]γ;δ = {〈〉} (1)

C[[Failure]]γ;δ = ∅ (2)

C[[f(a)]]γ;δ = γ(f)(Q[[a]]δ) (3)

C[[transmit(X | P ). c]]γ;δ = {transmit(v) s : v ∈ E , s ∈ Tr | (4)

Q[[P ]]δ⊕X 7→v = true ∧ s ∈ C[[c]]γ;δ⊕X 7→v} (5)

C[[c1 + c2]]
γ;δ = C[[c1]]

γ;δ ∪ C[[c2]]
γ;δ (6)

C[[c1 ‖ c2]]
γ;δ =

n
s : s ∈ Tr | ∃s1 ∈ C[[c1]]

γ;δ, s2 ∈ C[[c2]]
γ;δ. (s1, s2) s

o
(7)

C[[c1; c2]]
γ;δ = {s1s2 : s1, s2 ∈ Tr | s1 ∈ C[[c1]]

γ;δ ∧ s2 ∈ C[[c2]]
γ;δ} (8)

D[[{fi[Xi] = ci}m
i=1]]

δ = least γ : γ = {fi 7→ λvi.C[[ci]]
γ;δ⊕Xi 7→vi}m

i=1 (9)

E [[letrec {fi[Xi] = ci}m
i=1 in c]]δ = C[[c]]D[[{fi[Xi]=ci}m

i=1]]δ ;δ (10)

(in the set). A pointed complete partial order (pcpo) is a cpo that has a least element. All our
domains in Figure 6 are cpos since we can choose equality for the base domains A,R, T . Fur-
thermore, 2Tr , the powerset of all finite event sequences, is a pcpo under ⊆, and the function
space D → D′ is a pcpo under pointwise ordering if D′ is a pcpo. A function between cpos is
continuous if the result of applying it to the least upper bound of a directed set is the same
as the least upper bound of applying it to each element of the directed set individually. It is
well-known that each continuous function from a pcpo to the same pcpo has a least (unique
minimal) fixed point. It is a routine matter to check that C[[.]]., E [[.]]. and D[[.]]. map contracts
under function environments, contract specifications, and contract function environments, re-
spectively, to continuous functions. Consequently the least fixed point in line 9 of Figure 7
always exists.

We say c denotes a trace set S in context D, δ, if C[[c]]D;δ = S. The following theorem states
that the denotational semantics characterizes the satisfaction relation.

Theorem 1 (Denotational characterization of contract satisfaction).

C[[c]]D[[D]]δ;δ⊕δ′ = {s | δ′ `δ
D s : c}
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3.4 Contract Monitoring by Residuation

Extensionally, contracts classify traces (event sequences) into performing and nonperforming
ones. We are not only interested in classifying complete event sequences once they have hap-
pened, though, but in monitoring contract execution as it unfolds in time under the arrival of
events.

We say a trace is consistent with a trace set S if it is a prefix of an element of S; it is
inconsistent otherwise.

Given a trace set S denoted by a contract c and an event e, the residuation function ·\·
captures how c can be satisfied if the first event is e. It is defined as follows:4

e\S = {s′ | ∃s ∈ S : es′ = s}

Conceptually, we can map contracts to trace sets and use the residuation function to monitor
contract execution as follows:

1. Map a given contract c0 to the trace set S0 that it denotes. If S0 = ∅, stop and output
“inconsistent”.

2. For i = 0, 1, . . . do:
Receive message ei.
(a) If ei is a transfer event, compute Si+1 = ei\Si. If Si+1 = ∅, stop and output “breach

of contract”; otherwise continue.
(b) If ei is a “conclude contract” message, check whether 〈〉 ∈ Si. If so, all obligations

have been fulfilled and the contract can be terminated. Stop and output “successfully
completed”. If 〈〉 6∈ Si, output “cannot be concluded now”, let Si+1 = Si and continue
to receive messages.

To make the conceptual algorithm for contract life cycle monitoring from Section 3.4 oper-
ational, we need to represent the residual trace sets and provide methods for deciding tests for
emptiness and failure. In particular, we would like to use contracts as representations for trace
sets. Not all trace sets are denotable by contracts, however. In particular, given a contract c
that denotes a trace set Sc it is not a priori clear whether e\Sc is denotable by a contract c′.
If it is, we call c′ the residual contract of c after e.

Let us momentarily extend contract specifications with a residuation operator, which is the
syntactic analogue of residuation, but for contracts instead of trace sets:

C[[e\c]]γ;δ = {s′ | ∃s ∈ C[[c]]γ;δ : es′ = s}.

Let us write D, δ |= c = c′ if C[[c]]γ;δ⊕δ′ = C[[c′]]γ;δ⊕δ′ for all δ′, where γ = D[[D]]δ; analogously
for D, δ |= c ⊆ c′. To elide parentheses we use the following operator precedence order in
contract expressions (highest precedence first): residuation ·\·, concurrent composition · ‖ ·,
alternation ·+ ·, sequential composition ·; ·.

Lemma 1 (Correctness of residuation). The reduation equalities in Figure 8 are true.

For the proof of this lemma we need an auxiliary lemma that extends the compositionality
of the base language to the contract language:

Lemma 2 (Agreement of substitution and environments). For all c, γ and δ:

C[[c]]γ;δ⊕X 7→v = C[[c[v/X]]]γ;δ

4 Conway [Con71] calls e\S the e-derivative for a language S and alphabet symbol e. We use the term
residuation instead to emphasize that e\S represents the residual obligations of a contract after
execution of event e.
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Fig. 8 Residuation equalities
D, δ |= e\Success = Failure
D, δ |= e\Failure = Failure

D, δ |= e\f(a) = e\c[v/X] if (f(X) = c) ∈ D, v = Q[[a]]δ

D, δ |= transmit(v)\(transmit(X | P ). c) =


c[v/X] if δ ⊕ {X 7→ v} |= P
Failure otherwise

D, δ |= e\(c1 + c2) = e\c1 + e\c2

D, δ |= e\(c1 ‖ c2) = e\c1 ‖ c2 + c1 ‖ e\c2

D, δ |= e\(c1; c2) =


(e\c1; c2) + e\c2 if D, δ |= Success ⊆ c1

e\c1; c2 otherwise

Executing the residuation equations as left-to-right rewrite rules eliminates the residuation
operator in e\c, assuming c is residuation operator free to start with. That computation does
not always terminate, however. Consider, e.g.,

letrec f(N) = (transmit(a1, a2, r, T | T ≤ N) ‖ f(N + 1)) in f(0)

and event transmit(a1, a2, r, 0). Applying the rewrite rules will not terminate. Intuitively, this
is because transmit(a1, a2, r, 0) can be matched against any one of the infinitely many commit-
ments

transmit(a1, a2, r, T0|T0 ≤ 0) ‖ · · · ‖ transmit(a1, a2, r, Ti|Ti ≤ i) ‖ · · ·

since transmit(a1, a2, r, 0) satisfies the match condition of each one of them. Note that, seman-
tically, f(N) = transmit(a1, a2, r, T | T ≤ N) ‖ f(N + 1), ∅ |= f(0) = Failure, but left-to-right
rewriting according to Figure 8 does not rewrite f(0) to Failure.

3.5 Nullable and Guarded Contracts

In this section we characterize nullability of a contract and introduce guarding, which is a
sufficient condition on contracts for ensuring that residuation can be performed by reduction
on contracts.

Fig. 9 Nullable contracts

D ` c nullable (f(X) = c) ∈ D

D ` f(a) nullable
D ` c nullable

D ` c + c′ nullable

D ` c′ nullable

D ` c + c′ nullable

D ` Success nullable D ` c nullable D ` c′ nullable

D ` c ‖ c′ nullable

D ` c nullable D ` c′ nullable

D ` c; c′ nullable

Definition 1 (Nullability).

1. We write D |= c nullable if D, δ |= Success ⊆ c for some δ; that is, 〈〉 ∈ C[[c]]D;δ.
2. We say c is nullable (or terminable) in context D if D ` c nullable is derivable by the

inference system in Figure 9.

A nullable contract can be concluded successfully, but may possibly also be continued. E.g.,
the contract Success + transmit(a1, a2, r, t|P ) is nullable, as it may be concluded successfully
(left choice). Note however, that it may also be continued (right choice). It is easy to see
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that nullability is independent of δ and δ′: 〈〉 ∈ C[[c]]γ;δ⊕δ′ if and only if 〈〉 ∈ C[[c]]γ;δ̂⊕δ̂′ for
any other δ̂ and δ̂′, where γ = D[[D]]δ. Deciding nullability is required to implement Step 2b in
contract monitoring. The following proposition expresses that nullability characterizes semantic
nullability.

Proposition 1 (Syntactic characterization of nullability).

D |= c nullable ⇐⇒ D ` c nullable.

Definition 2 (Guarded contract, guarded declarations). Let D = {fi[Xi] = ci}m
i=1 be

contract template declarations.
A contract c is guarded in context D if D ` c guarded is derivable from Figure 10. We say

D is guarded if ci is guarded in context D for all i with 1 ≤ i ≤ m.

Intuitively, guardedness ensures that we do not have (mutual) recursions such as {f(X) =
g(X), g(X) = f(X)} that cause the residuation algorithm to loop infinitely. Guarded declara-
tions ensure that all contracts built from them are guarded:

Lemma 3 (Guardedness of contracts using guarded declarations). For all D, c, if D
is guarded then D ` c guarded.

Fig. 10 Guarded contracts

D ` Success guarded D ` Failure guarded

D ` transmit(X | P ). c guarded
D ` c guarded (f(X) = c) ∈ D

D ` f(a) guarded

D ` c guarded D ` c′ guarded

D ` c + c′ guarded

D ` c guarded D ` c′ guarded

D ` c ‖ c′ guarded

D ` c nullable D ` c guarded D ` c′ guarded

D ` c; c′ guarded

D 6` c nullable D ` c guarded

D ` c; c′ guarded

As we shall see, guardedness is key to ensuring termination of contract residuation and
thus that every (guarded) contract has a residual contract under any event in the reduction
semantics of Figure 11.

3.6 Operational Semantics I: Deferred Matching

The denotational semantics tells us what trace set is denoted by a contract, and residuation
on trace sets tells us how to turn the denotational semantics conceptually into a monitoring
semantics. In this section we present a reduction semantics for contracts, which lifts residua-
tion on trace sets to contracts and is derived systematically from the residuation equalities of
Figure 8.

The ability of representing residual contract obligations of a partially executed contract
and thus any state of a contract as a bona fide contract carries the advantage that any analysis
that is performed on “original” contracts automatically extends to partially executed contracts
as well. E.g., an investment bank that applies valuations to financial contracts before offering
them to customers can apply their valuations to their portfolio of contracts under execution;
e.g., to analyze its risk exposure under current market conditions.
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Fig. 11 Deterministic reduction (delayed matching)

D, δ `D Success
e−→ Failure D, δ `D Failure

e−→ Failure

δ ⊕ {X 7→ v} |= P (v = Q[[a]]δ)

D, δ `D transmit(X|P ). c
transmit(v)−→ c[v/X]

δ ⊕ {X 7→ v} 6 |=P (v = Q[[a]]δ)

D, δ `D transmit(X|P ). c
transmit(v)−→ Failure

D, δ `D c[v/X]
e−→ c′ (f(X) = c) ∈ D, v = Q[[a]]δ

D, δ `D f(a)
e−→ c′

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c + c′
e−→ d + d′

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c ‖ c′
e−→ c ‖ d′ + d ‖ c′

D ` c nullable D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c; c′
e−→ (d; c′) + d′

D 6` c nullable D, δ `D c
e−→ d

D, δ `D c; c′
e−→ d; c′

Likewise, a company that analyzes production and capacity requirements of a contract
before offering it to a customer can apply the same analysis to the contracts it has under
execution; e.g., to adjust planning based on present capacity requirements. The reduction
semantics is presented in Figure 11. The basic matching rule is

δ ⊕ {X 7→ v} |= P (v = Q[[a]]δ)

D, δ `D transmit(X|P ). c
transmit(v)−→ c[v/X]

It matches an event with a specific commitment in a contract. There may be multiple com-
mitments in a contract that match the same event. The semantics captures the possibilities of
matching an event against multiple commitments by applying all possible reductions in alter-
natives and concurrent contract forms and forming the sum of their possible outcomes (some
of which may actually be Failure).

The rule
D, δ `D c

e−→ d D, δ `D c′
e−→ d′

D, δ `D c + c′
e−→ d + d′

thus reduces both alternatives c and c′ and then forms the sum of their respective results d, d′.
Likewise, the rule

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c ‖ c′
e−→ c ‖ d′ + d ‖ c′

for concurrent subcontracts expresses that the match could be in either one of c or c′ and
represents the result as the sum of those two possibilities.

Finally, the rule

D ` c nullable D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c; c′ e−→ (d; c′) + d′

captures that e can be matched in c or, if c is nullable, in c′. Note that, if c is not nullable, e
can only be matched in c, not c′, as expressed by the rule

D 6` c nullable D, δ `D c
e−→ d

D, δ `D c; c′ e−→ d; c′
.
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In this fashion the semantics keeps track of the results of all possible matches in a reduc-
tion sequence as explicit alternatives (summands) and defers the decision as to which specific
commitment is matched by a particular event during contract execution until the very end: By
selecting a particular summand in a residual contract after a number of reduction steps that
represents Success (and the contract is thus terminable) a particular set of matching decisions
is chosen ex post. As presented, the reduction semantics gives rise to an implementation in
which the multiple reducts of previous reduction steps are reduced in parallel, since they are
represented as summands in a single contract, and the rule for reduction of sums reduces both
summands. It is relatively straightforward to turn this into a backtracking semantics by an
asymmetric reduction rule for sums, which delays reduction of the right summand.

The operational semantics fully and faithfully implements residuation (when the residuation
equalities are oriented):

Theorem 2 (Residuation by deferred matching).

1. For any c, c′, δ, e and D: if D, δ `D c
e−→ c′ then D, δ |= e\c = c′.

2. For all c, δ and guarded D, there exists a unique c′ such that D, δ `D c
e−→ c′; furthermore,

D ` c′ guarded.

Using Theorem 2 we can turn our conceptual contract monitoring algorithm into a real
algorithm.

1. Let contract c0 be given. If c0 is inconsistent, stop and output “inconsistent”.
2. For i = 0, 1, . . . do:

Receive message ei.
(a) If ei is a transfer event, let ci+1 be such that `D ci

ei−→ ci+1. If ci+1 is inconsistent,
stop and output “breach of contract”; otherwise continue.

(b) If e is a “terminate contract” message, check whether ci is nullable. If so, all obligations
have been fulfilled and the contract can be terminated. Stop and output “successfully
completed”. If ci is not nullable, output “cannot be terminated now”, let ci+1 = ci and
continue to receive messages.

Proposition 1 provides a syntactic characterization of nullability, which can easily be turned
into an algorithm. Deciding D, δ |= c = Failure, that is whether a contract has actually failed,
is a much harder problem. See Figure 21 for a sketch for a conservative approximation (some
failed contracts may not be identified as such) to this.

3.7 Operational Semantics II: Eager Matching

The deferred matching semantics of Figure 11 is flexible and faithful to the natural notion
of contract satisfaction as defined in Figure 5. But from an accounting practice view it is
weird because matching decisions are deferred. In bookkeeping standard modus operandi is
that events are matched against specific commitments eagerly ; that is online, as events arrive.5

We shall turn the deferred matching semantics of Figure 11 into an eager matching semantics
(Figure 12). The idea is simple: Represent here-and-now choices as alternative rules (meta-level)
as opposed to alternative contracts (object level). Specifically, we split the rules for reducing
alternatives and concurrent subcontracts into multiple rules, and we capture the possibility
of reducing in the second component of a sequential contract by adding τ -transitions, which
“spontaneously” (without a driving external event) reduce a contract of the form Success; c to

5 There are standard accounting practices for changing such decisions, but both default and standard
conceptual model are that matching decisions are made as early as possible. In general, it seems
representing and deferring choices and applying hypothetical reasoning to them appears to be a
rather unusual phenomenon in accounting.
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c. For this to be sufficient we have to make sure that a nullable contract indeed can be reduced
to Success, not just a contract that is equivalent to Success, such as Success ‖ Success. This
is done by ensuring that τ -transitions are strong enough to guarantee reduction to Success as
required.

Fig. 12 Nondeterministic reduction (eager matching)

D, δ `N Success
e−→ Failure D, δ `N Failure

e−→ Failure

δ ⊕ {X 7→ v} |= P, v = Q[[a]]δ

D, δ `N transmit(X | P ). c
transmit(v)−→ c[v/X]

δ ⊕ {X 7→ v} 6 |=P, v = Q[[a]]δ

D, δ `N transmit(X|P ). c
transmit(v)−→ Failure

(f(X) = c) ∈ D, v = Q[[a]]δ

D, δ `N f(a)
τ−→ c[v/X]

D, δ `N c + c′
τ−→ c D, δ `N c + c′

τ−→ c′

D, δ `N c
λ−→ d

D, δ `N c ‖ c′
λ−→ d ‖ c′

D, δ `N c′
λ−→ d′

D, δ `N c ‖ c′
λ−→ c ‖ d′

D, δ `N Success ‖ c
τ−→ c D, δ `N c ‖ Success

τ−→ c D, δ `N Success; c′
τ−→ c′

D, δ `N c
λ−→ d

D, δ `N c; c′
λ−→ d; c′

D, δ `N c
τ−→ c′ D, δ `N c′

e−→ c′′

D, δ `N c
e−→ c′′

D, δ `N c
e−→ c′

δ `N letrecD in c
e−→ letrecD in c′

Based on these considerations we arrive at the reduction semantics in Figure 12, where
meta-variable λ ranges over events e and the internal event τ . Note that it is nondeterministic
and not even confluent: A contract c can be reduced to two different contracts by the same
event. Consider e.g., c = a; b + a; b′ where a, b, b′ are commitments, no two of which match the
same event. For event e matching a we have D, δ `N c

e−→ b and D, δ `N c
e−→ b′, but neither b

nor b′ can be reduced to Success or any other contract by the same event sequence. In reducing
c we have not only resolved it against e, but also made a decision: whether to apply it to the
first alternative of c or to the second. Technically, the reduction semantics is not closed under
residuation: Given c and e it is not always possible to find c′ such that D, δ `N c

e−→ c′ and
D; δ |= e\c = c′. It is sound, however, in the sense that the reduct always denotes a subset of
the residual trace set. It is furthermore complete in the sense that the set of all reductions do
preserve residuation.

Theorem 3 (Soundness of eager matching).

1. If D, δ `N c
e−→ c′ then D, δ |= c′ ⊆ e\c.

2. If D, δ `N c
τ−→ c′ then D, δ |= c′ ⊆ c.

Even though individual eager reductions do not preserve residuation, the set of all reductions
does so:

Theorem 4 (Completeness of eager matching). If D, δ `D c
e−→ c′ then there exist con-

tracts c1, . . . , cn for some n ≥ 1 such that D, δ `N c
e−→ ci for all i = 1 . . . n and D, δ |= c′ ⊆∑n

i=1 ci.
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As a corollary, Theorems 3 and 4 combined yield that the object-level nondeterminism
(expressed as contract alternatives) in the deferred matching semantics is faithfully reflected in
the meta-level nondeterminism (expressed as multiple applicable rules) of the eager matching
semantics.

3.8 Operational Semantics III: Eager Matching with Explicit Routing

Consider the following execution model for contracts: Two or more parties each have a copy of
the contract they have previously agreed upon and monitor its execution under the arrival of
events. Even if they agree on prior contract state and the next event, the parties may arrive at
different residual contracts and thus different expectations as to the future events allowed under
the contract. This is because of nondeterminacy in contract execution with eager matching;
e.g., a payment of $50 may match multiple payment commitments, and the parties may make
different matches. We can remedy this by making control of contract reduction with eager
matching explicit in order to make reduction deterministic: events are accompanied by control
information that unambiguously prescribes how a contract is to be reduced. In this fashion
parties that agree on what events have happened and on their associated control information,
will reduce their contract identically. 6

The basic idea is that all nondeterminism in our reduction semantics (see Figure 12) can
be reduced to a series of choices and routing decisions to identify the particular commitment
the event is to be matched with; in particular, we can express such a series as an element of I∗

where I = {f, s, l, r}; see below. A control-annotated event then is an element of I∗E . (Recall
that E denotes the set of transfer events.) In Figure 13 we note that d ∈ I∗.

The τ -reductions in Figure 13 rewrite a contract into a simplified form while preserving its
semantics faithfully:

Proposition 2 (Soundess of τ-reduction). For all D, δ, c, c′, if D, δ `C c
τ−→ c′ then D, δ |=

c = c′.

Furthermore, they are strong enough to guarantee that any contract equivalent to Success
actually reduces to Success.

Proposition 3 (Completeness of τ-reduction for concluded contracts). For all D, δ, c, c′:

D, δ � c = Success if and only if D, δ `C c
τ∗−→ Success.

Finally, τ -rewriting is strongly normalizing and confluent, which means that each contract
has a unique τ -normal form, which can be computed by applying the τ -rewriting rules exhaus-
tively in arbitrary order.

Lemma 4 (Unique normalization of τ-reduction). For all δ and guarded D there is a
unique c′ such that

1. D, δ `C c
τ∗−→ c′ and

2. for no c′′ do we have D, δ `C c′
τ−→ c′′.

We say c′ in Lemma 4 is τ -normalized or simply normalized and we call it the τ -normalized
form of c. We can observe that a contract is nullable if and only if its τ -normalized form has
the form . . . + Success + . . .; that is, has a Success-summand.

The following theorem expresses that sequences of labels f, s, l, r preceding an economic
event unambiguously determine how a contract should be reduced.
6 The question of which party has the right of generating control information is very important, of

course. It will be discussed only briefly later, as it is beyond the scope of this paper. We only require
that a consensus on the events and their associated control information has been achieved, whether
dictated by one party or the other having the (contractual) right to do so or by an actual consensus
process.
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Fig. 13 Eager matching with explicit reduction control

D, δ `C Success
e−→ Failure

D, δ `C Failure
e−→ Failure

δ ⊕ {X 7→ v} |= P (v = Q[[a]]δ)

D, δ `C transmit(X | P ). c
transmit(v)−→ c[v/X]

δ ⊕ {X 7→ v} 6 |=P (v = Q[[a]]δ)

D, δ `C transmit(X|P ). c
transmit(v)−→ Failure

(f(X) = c) ∈ D (v = Q[[a]]δ)

D, δ `C f(a)
τ−→ c[v/X]

D, δ `C c
τ−→ d

D, δ `C c + c′
τ−→ d + c′

D, δ `C c′
τ−→ d′

D, δ `C c + c′
τ−→ c + d′

D, δ `C Success + Success
τ−→ Success

D, δ `C c
de−→ c′

D, δ `C c + d
fde−→ c′

D, δ `C d
de−→ d′

D, δ `C c + d
sde−→ d′

D, δ `C c
τ−→ d

D, δ `C c ‖ c′
τ−→ d ‖ c′

D, δ `C c′
τ−→ d′

D, δ `C c ‖ c′
τ−→ c ‖ d′

D, δ `C c
de−→ d

D, δ `C c ‖ c′
lde−→ d ‖ c′

D, δ `C c′
de−→ d′

D, δ `C c ‖ c′
rde−→ c ‖ d′

D, δ `C Success ‖ c
τ−→ c D, δ `C c ‖ Success

τ−→ c

D, δ `C c
τ−→ d

D, δ `C c; c′
τ−→ d; c′

D, δ `C c
e−→ d

D, δ `C c; c′
e−→ d; c′

D, δ `C Success; c′
τ−→ c′
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Theorem 5 (Correctness of eager matching with routing). For each δ, D, normalized
c and event e we have that D, δ `N c

e−→ c′ if and only if there exists d ∈ {f, s, l, r}∗ such that
D, δ `C c

de−→ c′. Furthermore, for all c′′ such that D, δ `C c
de−→ c′′ we have c′ = c′′; that is,

given c and control-annotated event de the residual contract c′′ is uniquely determined.

Intuitively, a control-annotated event de conveys an event e and information d that unam-
biguously routes the event to the particular commitment it is to be matched with: f, s determine
which branch of a .+ .-contract is to be chosen, and l, r identify in which subcontract of a . ‖ .-
contract the economic event is to be matched. This routing information ensures that all trading
partners in a contract, each maintaining their own state of the contract, match events to the
same atomic commitment and thus can be assured that they will also be in agreement on the
residual contract. Other methods for controlling reduction in an eager matching semantics are
discussed by Andersen and Elsborg [AE03].

Some of these left/right choices may be further eliminated in practice (that is, inferred au-
tomatically) where they are “forced” (no other choice allows successful completion of contract).

4 Example Contracts

We previously saw an encoding of the Agreement to Sell Goods (Figure 4). In this section, two
additional real-life example contracts are considered.

First, the previously presented abbreviated version of the natural language Legal Services
Agreement (Figure 2) is encoded in our contract specification language. Second, we present a
natural language contract for software development (Figure 15) and provide its encoding in
our language (Figure 16).

Before it is possible to express real-life contracts, however, the predicate language and the
arithmetic language must be defined. For the purpose of demonstration we will afford ourselves
a fairly advanced language that has multiple datatypes (e.g. integers and dates), common
arithmetic operators, logical connectives, lists and a number of built-in functions. The syntax
is common and straightforward, and hence we shall not delve into the technical details here.
Later, in Section 5, we will define the language and consider possible restrictions that ameliorate
contract analysis.

Fig. 14 Specification of Agreement to Provide Legal Services
letrec

extra (att, com, invoice, pay) =

( Success

+ transmit (att, com, invoice, T2).

transmit (com, att, pay, T3 | T3 <= T2 + 45d))

legal (att, com, fee, invoice, pay, n, m, end) =

transmit (att, com, H, T | n < T and T <= m).

( extra (att, com, invoice, pay)

|| transmit (com att, fee, T | T <= m + 8d)

|| ( legal (att, com, fee, invoice, pay, m, min(m + 30d,end), end)

+ transmit (att, com, end, T | end <= T)))

in

legal ("Attorney","Company",10000,invoice,pay,0,30,360)

Writing the formal specification of the Legal Services Agreement (Figure 2) is fairly straight-
forward, bar two points: Consider the validity period specified in Section 3 of the contract.
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Taken literally, it would imply, that the attorney shall render services in the month of De-
cember, but receive no fee in consideration since January 2005 is outside the validity period.
Surely, this is not the intention; in fact, consideration will defeat most deadlines as is clearly
the intent here and this is avoided in the encoding of the contract (Figure 14). This weakness
in the informal contract is revealed, which is a good thing, when encoding it formally.

The Agreement to Provide Legal Services fails to specify who decides if legal services should
be rendered. In the encoding it is simply assumed that the attorney is the initiator and that all
services rendered over a month can be modelled as one event. Based on the hours of services
rendered, the attorney has a choice to invoice extra hours at the hourly rate. Furthermore, the
attorney is assumed to give the notice end to allow contract termination. This is introduced to
make sure that the contract is not nullable between every recursion.

Fig. 15 Software Development Agreement
Section 1. The Developer shall develop software as described in Exhibit A (Requirements Specifica-

tion) according the schedule set forth in Exhibit B (Project Schedule and Deliverables). Specifically,
the Developer shall be responsible for the timely completion of the deliverables identified in Exhibit
B.

Section 2. The Client shall provide written approval upon the completion of each deliverable identi-
fied in Exhibit B.

Section 3. In the event of any delay by the Client, all the Developer’s remaining deadlines shall be
extended by the greater of the two following: (i) five working days, (ii) two times the delay induced
by the Client. The Client’s deadlines shall be unchanged.

Section 4. In consideration of services rendered the Client shall pay USD $100.000 due on 7/1.
Section 5. If the Client wishes to add to the order, or if upon written approval of a deliverable, the

Client wishes to make modifications to the deliverable, the Client and the Developer shall enter
into a Change Order. Upon mutual agreement the Change Order shall be attached to this contract.

Section 6. The Developer shall retain all intellectual rights associated with the software developed.
The Client may not copy or transfer the software to any third party without the explicit, written
consent of the Developer.

Exhibit A. (omitted)
Exhibit B. Deadlines for deliverables and approval: (i) 1/1, 1/15; (ii) 3/1, 3/15, (final deadline) 7/1,

7/15.

Now consider the more elaborate Software Development Agreement in Figure 15. When
coding the contract, one notices that the contract fails to specify the ramifications of the
client’s non-approval of a deliverable. One also sees that the contract does not specify what to
do if due to delay, some approval deadline comes before the postponed delivery date. In the
current code, this is taken to mean further delay on the client’s part even if the client gave
approval at the same time as the deliverable was transmitted. It seems that contract coding is a
healthy process in the sense that it will often unveil underspecification and errors in the natural
language contract being coded. The Change Order described in Section 5 of the contract and
the intellectual rights described in Section 6 are not coded due to certain limitations in our
language. We will postpone the discussion of this until Section 6.

4.1 Example Reduction

We now demonstrate how the Legal Services Agreement behaves under our three reduction
strategies: deferred matching, eager matching, and eager matching with explicit control. All
three derivations assume that we invoke the contract as

legal (att, com, fee, invoice, pay, 0, 30, 60)
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Fig. 16 Specification of Software Development Agreement – note that we assume (easily de-
fined) abbreviations for max(x,y) and allow subtraction on the domain Time.
letrec

deliverables (dev, client, payment, deliv1, deadline1, approv1,

deliv2, deadline2, approv2,

delivf, deadlinef, approvf) =

transmit(dev, client, deliv1, T1 | T1 <= deadline1)).

transmit(client, dev, "ok", T).

transmit(dev, client, deliv2, T2 |

T2 <= deadline2 + max(5d, (T - approv1) * 2)).

transmit(client, dev, "ok", T).

transmit(dev, client, delivf, Tf |

Tf <= deadlinef + max(5d, (T - approv2) * 2)).

transmit(client, dev, "ok", T).

transmit(dev, client, "done", T).

Success

software (dev, client, payment, paymentdeadline, ds) =

deliverables (dev, client, deliv1, deadline1, approv1,

deliv2, deadline2, approv2,

delivf, deadlinef, approvf) ||

transmit(client, dev, payment, T | T <= paymentdeadline)

in

software ("Me", "Client", 100000, 2004.7.1, d1, 2004.1.1, 2004.1.15,

d2, 2004.3.1, 2004.3.15, final, 2004.7.1, 2004.7.15)

i.e. we would like the contract to run for two months. Of course, the parameters att, com, fee,
invoice, and pay should be bound to values, but we leave them as is for readability since none
of them have an impact on the control flow of the contract. This yields the contract body:

transmit (att, com, H, T | 0 < T and T <= 30).
( transmit (com att, fee, T | T <= 30 + 8d)
|| ( legal (att, com, fee, invoice, pay, 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

The sub-contract extra has been taken out to reduce the size of the reductions. To facilitate
comparison we will use the same basic event trace for all three reduction strategies:

(att,com,h1,20)−→ Services rendered first month
(att,com,h2,37)−→ Services rendered second month

(com,att,fee,38)−→ Fee for first month
(com,att,fee,62)−→ Fee for second month
(att,com,end,64)−→ Attorney signals end-of-contract

The trace will be furnished with reduction controls and interspersed with τ when mandated
by the concrete semantics in question. Consider Figure 17 for a juxtaposition of the two eager
matching strategies (with and without explicit control) on the Legal Services Agreement and
Figure 18 for a demonstration of the deferred matching strategy.
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Fig. 17 Eager matching without and with explicit control on the legal services agreement

transmit (att, com, H, T | 0 < T and T <= 30).
( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Services rendered first month:

(att,com,h1,20)−→

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Take the first branch in + and unfold ’legal’:

τ−→

( transmit (com, att, fee, T | T <= 30 + 8d)
|| (transmit (att, com, H, T | 30 < T and T <= 60).

( transmit (com, att, fee, T | T <= 60 + 8d)
|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))))

Services rendered second month:

(att,com,h2,37)−→

The non-determinism is not constrained to viable op-
tions, but will allow any obviously wrong reduction to
go wrong at any point. Assuming the desired outcome:

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( transmit (com, att, fee, T | T <= 60 + 8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

The next event matches a transmit in the first iteration
and a transmit in the second iteration. The contract
could reduce properly or fail. We demonstrate the latter.
Fee for first month:

(com,att,fee,38)−→

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( Success

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

At time 39 the whole contract can terminate, because
the 30 + 8d condition becomes unsatisfiable. Assume
that this possibility is exploited. Fee for second month:

(com,att,fee,62)−→

Now, there is a serious problem. The choice of match-
ing the first fee was unwise, and the limits of the eager
matching semantics shows. The contract can now only
fail.

( Failure
|| ( Success

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

τ−→

Failure

transmit (att, com, H, T | 0 < T and T <= 30).
( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Services rendered first month:

(att,com,h1,20)−→

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

We now take the first branch in + and unfold ’legal’

τ−→

( transmit (com, att, fee, T | T <= 30 + 8d)
|| (transmit (att, com, H, T | 30 < T and T <= 60).

( transmit (com, att, fee, T | T <= 60 + 8d)
|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))))

Services rendered second month:

r(att,com,h2,37)−→

We use explicit directives to point out the transmit we
wish to match. Probably, the runtime system already
suggested the options available and we picked one leav-
ing the details to the system.

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( transmit (com, att, fee, T | T <= 60 + 8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

Fee for first month

l(com,att,fee,38)−→

τ−→

This event matches two different transmits, but the de-
cision is taken “by” the directives:

( transmit (com, att, fee, T | T <= 60 + 8d)
|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Fee for second month:

l(com,att,fee,62)−→

τ−→

( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))

Attorney signals end-of-contract:

s(att,com,end,64)−→

Success
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Fig. 18 Deferred matching on the legal services agreement

transmit (att, com, H, T | 0 < T and T <= 30).
( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Services rendered first month:

(att,com,h1,20)−→

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Services rendered second month:

(att,com,h2,37)−→

( Failure
|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))
+

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( ( transmit (com, att, fee, T | T <= 60 + 8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T)))

+ Failure))

Let us remove the failed parts, i.e. C + Failure → C and
C ‖ Failure → Failure:

τ−→

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( transmit (com, att, fee, T | T <= 60 + 8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

Fee for first month:

(com,att,fee,38)−→

( Success
|| ( transmit (com, att, fee, T | T <= 60 + 8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

+
( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( Success

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

+
( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( transmit (com, att, fee, T | T <= 60 + 8d)

|| ( Failure
+ Failure)))

And some more housecleaning, also Success ‖ C → C:

τ−→

( transmit (com, att, fee, T | T <= 60 + 8d)
|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))
+

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Two continuations are valid at time T ≤ 38. The first
has matched the first month’s fee with the first iteration.
The second represents matching the first fee with the
second iteration. At time 39 the second branch can be
rewritten to failure if our algorithm is able to decide that
the condition 30 − 8d becomes unsatisfiable. But let us
leave both branches for now and see what happens. Fee
for second month:

(com,att,fee,62)−→

This time let us skip the step where all non-matching
branches get their own continuation, which is then re-
moved immediately afterwards. Assume that we only at-
tempt a match on the two transmits mentioning the fee:

( Success
|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))
+

( Failure
|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

τ−→

( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T)))

At this time a good failure algorithm would detect that
the invocation of legal can be reduced to failure. Unfold-
ing ’legal’ gives predicates of the form 60 < T and T ≤ 60
on all transmits, hence no event can match in ’legal’.
Attorney signals end-of-contract:

(att,com,end,64)−→

Success

Technically, this is Success || extra || extra because
we left out ’extra’ during reduction. Events can still
match the invoices (i.e. the attorney retains the right to
invoice any extra hours of service previously rendered).
The contract is terminable (nullable) at this point.

5 Contract Analysis

The formal groundwork in order, we can begin to ask ourselves questions about contracts such
as: What is my first order of business? When is the next deadline? How much of a particular
resource will I gain from my portfolio and at what times? What is the monetary value of my
portfolio? Is the contract I just wrote “safe” and “fair”? Will contract fulfillment require more
than the x units I currently have in stock?
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The attempt to answer such questions is broadly referred to as contract analysis. Some
analyses, notably “safeness”, will primarily be of interest during contract development, whereas
other analyses apply to running contracts. The residuation property allows a contract analysis
to be applied at any time (i.e. to any residual contract), and we can thus continuously monitor
the execution of the contracts in our portfolio.

Recall that our contract specification language is parameterized over the language of pred-
icates and arithmetic. There is a clear trade-off in play here: a sophisticated language buys
expressiveness, but renders most of the analyses undecidable.

There is another source of difficulties. Variables may be bound to components of an event
that is unknown at the time of analysis. An expression like transmit(a1, a2, R, T |true). offers
little insight into the nature of R unless furnished with a probability vector over all resources.

Here we will circumvent these problems by making do with a restricted predicate language
and accepting that analyses may not give answers on all input (but will give correct answers).

The predicate language is plugged in at two locations. In function application f(a) where all
components of the vector a must be checked according to the rules of the predicate language,
and in transmit(a1, a2, r, t|P ) where P must have the type Boolean. As previously we require
that a1, a2, r, and t are either variables (bound or unbound) or constants. If some components
are bound variables or constants, they must be equal to the corresponding components of an
incoming event (a′1, a

′
2, r

′, t′) for a match to occur.
Consider the syntax provided in figure 19. In addition to the types Agent, Resource,

and Time, the language has the fundamental types Int and Boolean. Take ρ to range over
{Int,Time}, take σ to range over ρ ∪ {Agent,Resource}, and assume that constants can be
uniquely typed (e.g. time constants are in ISO format, and agent and resource constants are
disjoint and known).

The language allows arithmetic on integers, simple propositional logic, and manipulation
of the two abstract types Resource and Time. Given a time (date) t we may add an integral
number of years, months or days. For example 2004.1.1 + 3d + 1y yields 2005.1.4. Resources
permit a projection on a named component (field) and all fields are of type Int. E.g. to extract
the total amount from an information resource named invoice we write #(invoice, total, t)
where t is some date7. The fields of resources may change over time; hence the third parameter
of type Time.

Observables can now be understood simply as fields of a ubiquitous resource named obs.
An Int may double for a Resource in which case the Int is understood to be a currency amount.

For the denotational semantics of the predicate language we define the following functions
mapping syntactic expressions to mathematical objects:

E : Exp → ∇→ (Agent ∪ Resource ∪ Int ∪ Time)
B : Bexp → ∇→ {t, f}

where we assume the following mathematical environment:

– ∇ is the set of all possible bindings δ of variables to values.
– Exp is the set of all possible expressions of type Int, Time, Resource or Agent in the

language.
– Bexp is the set of all possible expressions of type Boolean in the language.
– Resource and Agent are the sets of resources and agents respectively.

7 When a resource is introduced into the system through a match, it must be dynamically checked that
it possesses the required fields. The set of required fields can be statically determined by a routine
type check annotating resources with field names à la {date, total, paymentdeadline} Resource. To
keep things simple we omit this type extension here.
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Fig. 19 Example syntax for predicate language

∆(var) = σ

∆ ` var : σ

type(const) = σ

∆ ` const : σ

∆ ` e1 : Int ∆ ` e2 : Int op ∈ {+,−, ∗, /}
∆ ` e1 op e2 : Int

∆ ` t : Time ∆ ` e : Int f ∈ {y, m, d} op ∈ {+,−}
∆ ` t op e f : Time

∆ ` e : Time f ∈ {y, m, d}
∆ ` e#f : Int

∆ ` r : Resource ∆ ` t : Time f ∈ fields(r)

∆ ` #(r, f, t) : Int
∆ ` e : Int

∆ ` e : Resource

∆ ` e1 : ρ ∆ ` e2 : ρ

∆ ` e1 < e2 : Boolean

∆ ` e1 : σ ∆ ` e2 : σ

∆ ` e1 = e2 : Boolean

∆ ` b1 : Boolean ∆ ` b2 : Boolean op ∈ {and, or}
∆ ` b1 op b2 : Boolean

∆ ` b : Boolean
∆ ` not b : Boolean

– Int = Z
– Time = {. . . ,−2t,−1t, 0t, 1t, 2t, . . .} where operators + and − have the obvious interpre-

tations, and we have the map (·)t : Z → Time defined by (n)t = nt.
– Int ⊆ Resource
– Agent, Resource, and Time are pairwise disjoint.
– (Agent∪Resource∪ Int∪Time) is equipped with an (non-total) order < that is the union

of the orders of the participating sets. Assume that Int and Time have the usual orderings.
– ∧, ∨, and ¬ serve as logical operators with the usual meaning over the set {t, f}.
– If a and b are integers, a÷ b gives the the largest integer c such that c · b ≤ a. mod is the

corresponding modulo function so that c · b + a mod b = a.
– ϕ : Resource× Field×Time → Int is a projection function on resources, and Field is a set

of static field identifiers.

A contract analysis is a map from a syntactic description of a contract and some auxiliary
information to a domain of our choice. The auxiliary information is often an agent or a point in
time that the analysis should be relative to or an estimate of the probabilities associated with an
underlying process. Ideally, a contract analysis can be performed compositionally. This section
contains two simple analyses with this property. Space considerations prevent a walkthrough of
more involved examples, but the basic idea should be clear. We will assume for simplicity that
recursively defined contracts are guarded. The analyses are presented using inference systems
defined by induction on syntax, emphasizing the declarative and compositional nature of the
analyses.

5.1 Example: Failed Contracts

A contract may accept a sequence of one of more events that is not a prefix of a performing
trace. Thus the residual contract is failed and its denotation is the empty set – the contract
is in an inconsistent state. The inference rules provided in Figure 21 sketch how one could go
about detecting this. The focal point is being able to decide if a predicate P can not hold true
for any future values of its parameters. In practice, this often amounts to a simple argument:
A deadline has been passed.

We have referred to the failed analysis numerous times in the example reductions. In section
4 we saw that eager matching made a bad choice, which was not detected until much later.
The failure analysis seeks to alleviate such situations as early as possible. Consider the scenario
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Fig. 20 Denotational semantics for predicate language

E [[const]] = λδ ∈ ∇.const

E [[var]] = λδ ∈ ∇.δ(var)

E [[e1 + e2]] = λδ ∈ ∇.E [[e1]]δ + E [[e2]]δ

E [[e1 − e2]] = λδ ∈ ∇.E [[e1]]δ − E [[e2]]δ

E [[e1 ∗ e2]] = λδ ∈ ∇.E [[e1]]δ · E [[e2]]δ

E [[e1/e2]] = λδ ∈ ∇.E [[e1]]δ ÷ E [[e2]]δ

E [[e#d]] = λδ ∈ ∇.E [[e]]δ mod 30

E [[e#m]] = λδ ∈ ∇.E [[e]]δ ÷ 30 mod 12

E [[e#y]] = λδ ∈ ∇.E [[e]]δ ÷ 360

E [[e + f d]] = λδ ∈ ∇.E [[e]]δ + (E [[f ]]δ)t

E [[e + f m]] = λδ ∈ ∇.E [[e]]δ + (E [[f ]]δ · 30)t

E [[e + f y]] = λδ ∈ ∇.E [[e]]δ + (E [[f ]]δ · 360)t

E [[e− f d]] = λδ ∈ ∇.E [[e]]δ − (E [[f ]]δ)t

E [[e− f m]] = λδ ∈ ∇.E [[e]]δ − (E [[f ]]δ · 30)t

E [[e− f y]] = λδ ∈ ∇.E [[e]]δ − (E [[f ]]δ · 360)t

E [[#(r, f, t)]] = λδ ∈ ∇.ϕ(E [[r]]δ, f, E [[t]]δ)

B[[e1 < e2]] = λδ ∈ ∇.


t if E [[e1]]δ < E [[e2]]δ
f otherwise

B[[e1 = e2]] = λδ ∈ ∇.


t if E [[e1]]δ = E [[e2]]δ
f otherwise

B[[b1and b2]] = λδ ∈ ∇.B[[b1]]δ ∧ B[[b2]]δ

B[[b1or b2]] = λδ ∈ ∇.B[[b1]]δ ∨ B[[b2]]δ

B[[not b]] = λδ ∈ ∇.¬B[[b]]δ

Fig. 21 Failed contracts

∀δ′,∀t′ ≥ t : (δ ⊕ δ′ ⊕ T 7→ t′ |= ¬P )

D, δ, t ` transmit(XT | P ). c failed

D, δ, t ` c failed

D, δ, t ` transmit(XT | P ). c failed

D ` Failure failed
D, δ, t ` c failed D, δ, t ` c′ failed

D, δ, t ` c + c′ failed

D, δ, t ` c failed

D, δ, t ` c ‖ c′ failed

D, δ, t ` c′ failed

D, δ, t ` c ‖ c′ failed

D, δ, t ` c failed

D, δ, t ` c; c′ failed

D, δ, t ` c′ failed

D, δ, t ` c; c′ failed

D, δ, t ` c failed (f(X) = c) ∈ D

D, δ, t ` f(a) failed



27

in Figure 22 for an example under the eager matching regime. The failure of the contract is
detected as soon as there is no remedy, i.e. at T = 39.

Fig. 22 Example: Failed legal services agreement under eager matching (non-deterministic)

transmit (att, com, H, T | 0 < T and T <= 30).
( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

(att, com, h1, 20),
(att, com, h2, 37),
(com, att, fee, 38)

−→

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( Success

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

We would rather not wait for the next event
(com,att,fee,62)−→ before realizing that the situation is not working. As soon

as T = 39, transmit (com att, fee, T | T <= 30 + 8d) can transition to Failure. The relevant part of the derivation
looks like this:

D, d, 39 ` 39 ≤ 30 + 8d

D, d, 39 ` transmit (com att, fee, T | T <= 30 + 8d) failed

D, d, 39 `
( transmit (com att, fee, T | T <= 30 + 8d)
|| ( Success

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

failed

5.2 Example: Task List

Given a contract or a portfolio of contracts it is tremendously important for an agent to know
when and how to act. To this end we demonstrate how a very simple task list can be compiled.

Consider the definition given in Figure 23. The function gives returns a list of outstanding
commitments that can be carried out at time t. We only admit interval conditions of the form
a ≤ T and T ≤ b with T being the time variable in the enclosing transmit, since in “real”
contracts hardly anything else is used. It is important to notice that the result of the analysis
may be incomplete. A task is only added if the agents agree (i.e. a = a1), but if a1 is not
bound at the time t of analysis, the task is simply skipped. A more elaborate dataflow analysis
might reveal that in fact a1 is always bound to a.

Also notice the case for application f(a). We expand the body of the named contract f given
arguments a but only once (assuming f is guarded). This measure ensures termination of the
analysis, but reduces the function’s look-ahead horizon. Hence, any task or point of interest
more than one recursive unfolding away is not detected. This is unlikely to have practical
significance for two reasons: (1) recursively defined contracts are guarded and so a transmit
must be matched before a new unfold can occur. This transmit therefore is presumably more
relevant than any other transmits further down the line; (2) it would be utterly unidiomatic
if some transmit t1 was required to be matched before another transmit t2, but nevertheless
had a later deadline than that of t2.

For an example of the task list analysis, we return to the Legal Services Agreement. The
task list works best with eager matching with explicit reduction control. Eager matching alone
is too careless, and deferred matching represents many states, which are all assumed valid, but
may confuse the user when he or she sees overlapping tasks for every hypothetical state of the
contract. Consider Figure 24 for an example of how the task list evolves under reduction of the
Legal Services Agreement.

The examples given above, in their simplicity, may be extended given knowledge of the
problem domain. In particular, knowledge of or forecasting about probable event sequences
may be used in a manner orthogonal to the coding of analyses by appropriate function calls.

Analyses possible to implement in this way include:

– Resource flow forecasting (supply requirements).
– Terminability by agent, latest termination, earliest termination.
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Fig. 23 Task list analysis

D, δ, a, t ` Success : [] D, δ, a, t ` Failure : []

|= a 6= a1 X = (a1, a2, R, T )

D, δ, a, t ` transmit(X | x ≤ T and T ≤ y). c : []

|= ¬(x ≤ t and t ≤ y)

D, δ, a, t ` transmit(X | x ≤ T and T ≤ y). c : []

|= a = a1 X = (a1, a2, R, T ) |= x ≤ t and t ≤ y

D, δ, a, t ` transmit(X | x ≤ T and T ≤ y). c : [transmit(X | x ≤ T and T ≤ y). c]

D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2
D, δ, a, t ` c1 + c2 : l1 @ l2

D ` c1 nullable D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2
D, δ, a, t ` c1; c2 : l1 @ l2

D 6` c1 nullable D, δ, a, t ` c1 : l1
D, δ, a, t ` c1; c2 : l1

D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2

D, δ, a, t ` c1 ‖ c2 : l1 @ l2

(f(X) = c) ∈ D D, δ, a, t ` c : l

D, δ, a, t ` f(a) : l

– Valuation, or simply put: What is the value to an agent of a given contract? The analysis
is fairly intricate and requires knowledge of financial models and stochastic processes.
Interested readers are referred to Peyton Jones and Eber [JES00,JE03] who provide a
very readable introduction targeted at computer scientists.

– General model checking for business rules: (a) static (b) dynamic/runtime (Timed LTL
checking), cf. [KPA04].

6 Discussion and Future Work

Our definition of contracts focuses on contracts as classifiers of event traces into performing
and nonperforming ones. This is coarse, and many real-world issues are left out—not for good,
but for now.

The basic idea is to develop these notions within a general framework that may require
specifications of runtime environment and protocols for event transmission. The inclusion of
explicit operators in the language to mimic many standard steps in the contract lifecycle—say
checking a contract for potential problems with current law—would not facilitate easy contract
coding without both static (“does this contract conform to standard practice?”) and dynamic
(“is this sequence of events and their handling proper?”) checks appealing to some enclosing
structures.

We decided to pursue compositionality—hierarchical specification—from the outset as a
central notion and thus follow a process algebra approach, basically to evaluate how far that
would take us in the given domain. This can be contrasted to a network-oriented approach sup-
ported by suitable diagramming to appeal to visual faculties, which appears to be the preferred
modeling approach for workflow systems (Petri nets) [vdAvH02] and in object-oriented analysis
(UML diagramming). Note that hierarchical specification is also needed in a network-oriented
approach to achieve modular description and reuse of specification components. Furthermore,
powerful specification mechanisms such as functional abstraction and (non-tail) recursion have
no simple visual representations.

The Software Development Agreement (Figure 15) provides a good setting to observe the
limitations to our approach and the ramifications of the design choices made.
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Fig. 24 Task list for the Legal Services Agreements under eager matching with explicit control

transmit (att, com, H, T | 0 < T and T <= 30).
( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Services rendered first month:

(att,com,h1,20)−→

τ−→

T = 0 :
att: transmit (att, com, H, T | 0 < T and T <= 30)

( transmit (com, att, fee, T | T <= 30 + 8d)
|| (transmit (att, com, H, T | 30 < T and T <= 60).

( transmit (com, att, fee, T | T <= 60 + 8d)
|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))))

Services rendered second month:

r(att,com,h2,37)−→

T = 20 :
com: [transmit (com att, fee, T | T <= 30 + 8d)]

T = 31 :
att: transmit (att, com, H, T | 30 < T and T <= 60)
com: transmit (com att, fee, T | T <= 30 + 8d)

( transmit (com, att, fee, T | T <= 30 + 8d)
|| ( transmit (com, att, fee, T | T <= 60 + 8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))))

Fee for first month:

l(com,att,fee,38)−→

τ−→

T = 37 :
com: transmit (com att, fee, T | T <= 30 + 8d)
com: transmit (com att, fee, T | T <= 60 + 8d)

Assuming the system was unable to decide predicates,
two additional tasks would have been shown for att:

att: transmit (att, com, H, T | 60 < T and T <= 60)
att: transmit (att, com, end, T | 60 <= T)

( transmit (com, att, fee, T | T <= 60 + 8d)
|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Fee for second month:

l(com,att,fee,62)−→

τ−→

T = 38 :
com: transmit (com att, fee, T | T <= 60 + 8d)

T = 60 :
att: transmit (att, com, end, T | 60 <= T)
com: transmit (com att, fee, T | T <= 60 + 8d)

( legal (..., 60, min(60 + 30d,60), 60)
+ transmit (att, com, end, T | 60 <= T))

Attorney signals end-of-contract:

s(att,com,end,64)−→

T = 62 :
att: transmit (att, com, end, T | 60 <= T)

Success T ≥ 64 : No tasks!

The Change Order is not coded. It might be cleverly coded in the current language, again
using constraints on the events passed around, but a more natural way would be using higher-
order contracts, i.e. contracts taking contracts as arguments. Thus, a Change Order would
simply be the passing back and forth of a contract followed by an instantiation upon agreement.

The transmission of rights can easily be coded, but the prohibition to transmit a particular
resource affects all other contracts. Currently, we have no construct available to handle this
situation.

Contracts often specify certain things that are not to be done (e.g. not copying the software).
Such restrictions should intersect all other outstanding contracts and limit them appropriately.
A higher-order language or predicates that could guard all transmits of an entire subcontract
might ameliorate this in a natural way.



30

A fuller range of language constructions that programmers are familiar with is also desirable;
in the present incarnation of the contract language, several standard constructions have been
left out in order to emphasize the core event model. In practice, conditionals and various
sorts of lambda abstractions would make the language easier to use, though not strictly more
expressive, as they can be encoded through events, albeit in a non-intuitive way. A conditional
that is not driven by events (i.e. an if-then-else) seems to be needed for natural coding in
many real-world contracts. Also, a catch-throw mechanism for unexpected events would make
contracts more robust.

Conversely, certain features of the language appear to be almost too strong for the domain;
the inclusion of full recursion means that contracts active for an unlimited period of time, say
leases, are easy to code, but make contract analysis significantly harder. In practice, contracts
running for “unlimited” time periods often have external constraints (usually local legislation)
forcing the contract to be reassessed by its parties, and possibly government representatives,
from time to time. Having only a restricted form of recursion that suffices for most practical
applications should simplify contract analysis.

The expressivity of the contract language and indeed the feasibility of non-trivial contract
analysis depends heavily on the predicate language used. Predicates restricted to the form
[a; b] are surely too limited, and further investigation into the required expressiveness of the
predicate language is desirable.

While the language is parametrized over the predicate language used, almost all real-world
applications will require some model of time and timed events to be incorporatedvis-à-vis the
examples using interval in Section 5 . The current event model allows for encoding through
the predicate language, but an extended set of events, with companion semantics, would make
for easier contract programming; timer (or “trigger”) events appear to be ubiquitous when
encoding contracts.

7 Related Work

The impetus for this work comes from two directions: the REA accounting model pioneered
by McCarthy [McC82] and Peyton Jones, Eber and Seward’s seminal article on specification
of financial contracts [JES00]. Furthermore, given that contracts specify protocols as to how
parties bound by them are to interact with each other there are links to process and workflow
models.

7.1 Composing Contracts

Peyton Jones, Eber and Seward [JES00] present a compositional language for specifying finan-
cial contracts. It provides a decomposition of known standard contracts such as zero coupon
bonds, options, swaps, straddles, etc., into individual payment commitments that are combined
declaratively using a small set of contract combinators. All contracts are two-party contracts,
and the parties are implicit. The combinators (taken from [JE03], revised from [JES00]) cor-
respond to Success, · ‖ ·, · + ·, transmit(·) of our language CP ; it has no direct counterparts
to Failure, ·; · nor, most importantly, recursion or iteration. On the other hand, it provides
conditionals and predicates that are applicable to arbitrary contracts, not just commitments
as in CP , something we have found to be worthwhile also for specifying commercial contracts.
Furthermore, their language provides an until-operator that allows a party to terminate a
contract successfully at a particular time, even if not all commitments have been satisfied.
Using until for contract specification seems difficult, however, since it may—legally—cut off
contract execution before all reciprocal commitments have been satisfied, e.g., the requirement
to pay for a service that has been rendered.
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Our contract language generalizes financial payment commitments to arbitrary transfers
of resources and information, provides explicit agents and thus provides the possibility of
specifying multi-party contracts.

We have provided a denotational semantics for CP and developed operational semantics
for contract monitoring from it, whereas Peyton Jones, Eber and Seward focus on valuation, a
sophisticated contract analysis based on stochastic analysis for pricing contracts.

7.2 Resources/Events/Agents (REA)

McCarthy [McC82] pioneered REA, an accounting model that focuses on the basic transaction
patterns of the enterprise, the exchange of scarce goods and the transformation of resources
by production, and separates it from phenomena that can be derived by aggregation or other
means. Geerts and McCarthy [GM00] complement REA’s entity-relationship model of basic
ex-post notions of events, in which agents transmit scarce resources, with ex-ante notions:
commitments and sets of commitments making up contracts.8 Contracts, however, are only
modeled as sets of commitments whose concrete terms and constraints are usually described in
natural language and as such live outside the scope of the entity-relationship model. Our work
provides a formalization for contracts and their (performing) executions and thus complements
the REA’s data-centered notions with a well-defined process perspective.

7.3 Process Algebra and Logic

Disregarding the structure of events and their temporal properties, CP is basically a process
algebra. It corresponds to Algebra of Communicating Processes (ACP) with deadlock (Failure),
free merge (· ‖ ·) and recursion, but without encapsulation [BW90]. Note that contracts are to
be thought of as exclusively reactive processes, however: they respond to externally generated
events, but do not autonomously generate them. This leads naturally to contracts classifying
event traces, making CSP [BHR84,Hoa85] and its trace-theoretic semantics a natural concep-
tual framework for our view-independent approach to contract specification. This is in contrast
to CCS-like process calculi [Hen88,Mil89,Mil99], which take a rather operational process-as-
machine view; they treat communication as dual pairs of send and receive messages and allow
observation of branching decisions in processes. Note that CP , as presented here, contains no
synchronization between concurrently executing subcontracts. A previous version of CP con-
tained the contract conjunction operator c & c′, whose denotational semantics is

C[[c & c′]]D;δ = C[[c]]D;δ ∩ C[[c′]]D;δ.

This is the parallel composition operator of CSP with synchronization at each step. A trace
satisfies c & c′ if it satisfies both c and c′. This makes it possible to specify a contract by
providing a basic specification, c (sales order), and refining it by conjoining it with an additional
policy, c′ (no alcohol must be sold to minors), that a correct contract execution must satisfy.
Our language can be extended to include contract conjunction. We have not included it here to
keep the theoretical treatment of CP simple. Furthermore, it is our impression that the above
asymmetry of c specifying the fundamental protocol for contract execution and c′ filtering
illegal executions may be better captured by formulating policies logically, e.g., in Linear-Time
Logic (LTL), possibly enforced by run-time verification [KPA03].

There are numerous timed variants of process algebras and temporal logics; see e.g. Baeten
and Middelburg [BM02] for timed process algebras. It should be noted that our contract lan-
guage is fundamentally deterministic to avoid misunderstanding between contract partners: by
design, nondeterministic implicit control decisions as in CCS-based process calculi are avoided.

8 This is a highly simplified description of key parts of REA.
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Indeed the eager matching semantics presented can be considered a process language with im-
plicit control decisions (a process may evolve nondeterministically and autonomously). Since
this is considered undesirable in our context (though realistic as it reflects the matching am-
biguities common in bookkeeping), its events (actions in process terminology) are beefed up
with control (“routing”) information to control process/contract evolution deterministically.

Note that, in contrast to conventional process calculi, we have included both sequential
composition and parameterized recursion to support a separation of data (the base language)
and control (the contract language).

Also, our base language is not fixed, but a parameter of the contract language so as to
accommodate expressing temporal (and other) constraints modularly and “naturally”. Indeed,
the basic structure of events can be entirely encapsulated in the base language, making the
technical development of the contract language (the “control part”) independent of REA or
other data models for that matter.

Timed process calculi tend to build on rudimentary models of time. These appear to be
insufficient for expressing contract constraints naturally, but may turn out to be viable as core
languages. Clearly, studying timing more closely as well as other connections to process calculi
constitutes requisite future work.

Finally, most of the extant process algebras apparently do not consider the approach of
contract monitoring by residuation. In this paper, the need for considering (prefixes of) event
traces leads to the problem of allowing only contracts that ensure that the arrival of any event
leads to a well-defined residual contract. Calculi such as CCS do not have a notion of event
traces, and do not encounter the problem, since the (structural) operational semantics turns
out to be sound and complete for the set of structural equivalences defining a “program” in
CCS. The main difference seems to be the liberal recursion operator employed in our language
which admits mutual recursion, unlike CCS where the constructs of equal strength only admit
transitions that are syntactically guarded in the sense that if an operator has a transition to a
new term, the root of that term contains an operator of “lower” strength (e.g. the “replication”
operator is guarded by the “parallel” operator in CCS).

7.4 Work flow and business process languages

In [SMTA95] an event algebra is developed which is used to monitor a discrete event system.
The terms of the algebra contain the equivalent of Success,Failure, · ‖ ·, ·+·, ·; · while the atomic
contract transmit(·). · is replaced by an enumerated set of unique atomic constructs with no
free variables. Iteration is stated to be done by instantiating terms such that atomic terms are
relabeled to ensure uniqueness of all atomic terms. A trace semantics is given for terms as well
as residuation equations. The equations allow monitoring of terms by a syntactic method like in
CP . Guardedness (in the sense of CP) is guarenteed by excluding recursion from the language.
It is not entirely clear how iteration is included in the language as no formal description of it
is given. The residuation equations given, essentially implement the eager semantics of CP .

Another branch of research has focused on the specification and modelling of business pro-
cesses. In this vein, the Business Process Modelling Language (BPML) is an XML-inspired
specification language defined by a consortium of agents from industry and reported in several
white papers and technical reports [Ark02,vdADtHW02]. A “program” in the language is, es-
sentially, an XML schema containing process specifications, including temporal and conditional
statements, as well as a restricted iteration construct (“repeat”). The scope of entities that can
reasonably be modelled by BPML is conceptually larger than the one considered in this paper,
since arbitrary (internal or external) processes and commitments can be modelled – hence also
contractual obligations. However, while the language operates with an execution model loosely
based on π-calculus [MPW89], a proper (and formal) semantics for process execution, perfor-
mance and monitoring is lacking. The semantics of the framework is currently described only
in terms of natural language, and any kind of safe automated or formal analysis of execution
of processes specified in the language thus cannot be performed at present.
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A Full Proofs

Proof (Theorem 1).
Let D = {fi[Xi] = ci}m

i=1 and δ be given. We prove

C[[c]]γ;δ⊕δ′ = {s : δ′ `δ
D s : c}

where γ = D[[D]]δ.

“⊇”: Define δ′ |=δ
D s : c ⇐⇒ s ∈ C[[c]]γ;δ⊕δ′ . We prove by induction on the derivation of

δ′ `δ
D s : c that δ′ |=δ

D s : c.

δ′ `δ
D 〈〉 : Success We need to show that δ′ |=δ

D 〈〉 : Success. This follows immediately

from C[[Success]]γ;δ⊕δ′ = {〈〉}.
X 7→ v `δ

D s : c (f(X) = c) ∈ D,v = Q[[a]]δ⊕δ′

δ′ `δ
D s : f(a)

Assume X 7→ v |=δ
D s : c (induc-

tion hypothesis) with v = Q[[a]]δ⊕δ′ and (f(X) = c) ∈ D. We need to show that
δ′ |=δ

D s : f(a).
By definition we have

C[[f(a)]]γ;δ⊕δ′ = γ(f)(Q[[a]]δ⊕δ′)
(by def. of v) = γ(f)(v)
(by def. of γ) = C[[c]]γ;δ⊕X 7→v

and thus, since X 7→ v |=δ
D s : c by induction hypothesis, we can conclude that δ′ |=δ

D

s : f(a).
δ ⊕ δ′′ |= P δ′′ `δ

D s : c (δ′′ = δ′ ⊕ {X 7→ v})
δ′ `δ

D transmit(v) s : transmit(X|P ). c
Assume δ ⊕ δ′′ |= P and δ′′ |=δ

D

s : c where δ′′ = δ′ ⊕ {X 7→ v}. We need to show that δ′ |=δ
D transmit(v) s :

transmit(X|P ). c.
Since δ ⊕ δ′′ |= P and δ′′ |=δ

D s : c it follows immediately from the definition of
C[[transmit(X | P ). c]]γ;δ⊕δ′ that δ′ |=δ

D transmit(v) s : transmit(X|P ). c.

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2 (s1, s2) s

δ′ `δ
D s : c1 ‖ c2

Assume δ′ |=δ
D s1 : c1, δ′ |=δ

D s2 : c2 and

(s1, s2) s. We need to show that δ′ |=δ
D s : c1 ‖ c2.

From the assumptions and the definition of C[[c1 ‖ c2]]γ;δ⊕δ′ it follows immediately that
δ′ |=δ

D s : c1 ‖ c2.

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2

δ′ `δ
D s1s2 : c1; c2

Immediate from the definition of C[[c1; c2]]γ;δ⊕δ′ .

δ′ `δ
D s : c1

δ′ `δ
D s : c1 + c2

Immediate from the definition of C[[c1 + c2]]γ;δ⊕δ′ .

δ′ `δ
D s : c2

δ′ `δ
D s : c1 + c2

Immediate from the definition of C[[c1 + c2]]γ;δ⊕δ′ .

“⊆”: We prove C[[c]]γ;δ⊕δ′ ⊆ {s | δ′ `δ
D s : c}.

Define γ′(fi) = λv.{s | Xi 7→ v `δ
D s : ci} for 1 ≤ i ≤ m. (Recall that δ is fixed.)

Claim: C[[c]]γ
′;δ⊕δ′ = {s | δ′ `δ

D s : c} for all δ′.
Proof of claim:
The proof is by structural induction on c.
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– Consider f(a) for some (f(X) = c) ∈ D. Let v = Q[[a]]δ⊕δ′ . We need to show that
C[[f(a)]]γ

′;δ⊕δ′ = {s | δ′ `δ
D s : f(a)}.

We have:

C[[f(a)]]γ
′;δ⊕δ′ = γ′(f)(Q[[a]]δ⊕δ′)

= γ′(f)(v)
= {s | X 7→ v `δ

D s : c}
= {s | δ′ `δ

D s : f(a)}

which concludes this case.
– Consider transmit(X | P ). c. We may assume C[[c]]γ

′;δ⊕δ′ = {s | δ′ `δ
D s : c} for all δ′.

We need to show that C[[transmit(X | P ). c]]γ
′;δ⊕δ′ = {s | δ′ `δ

D s : transmit(X | P ). c}.
We have:

C[[transmit(X | P ). c]]γ
′;δ⊕δ′

= {transmit(v) s | Q[[P ]]δ⊕δ′⊕X 7→v = true ∧ s ∈ C[[c]]γ
′;δ⊕δ′⊕X 7→v}

= {transmit(v) s | δ ⊕ δ′ ⊕X 7→ v |= P ∧ δ′ ⊕ δ′′ `δ
D s : c}

= {s′ | δ′ `δ
D s′ : transmit(X | P ). c}

which concludes this case.
– The remaining cases are straightforward.

From C[[c]]γ
′;δ⊕δ′ = {s | δ′ `δ

D s : c} for all δ′ follows immediately that γ′(f) = λv.C[[c]]γ
′;δ⊕X 7→v

for all (f(X) = c) ∈ D. Since γ = D[[D]]δ is the least function with this property, it follows
that γ v γ′ and thus C[[c]]γ;δ⊕δ′ ⊆ C[[c]]γ

′;δ⊕δ′ = {s | δ′ `δ
D s : c} and we are done.

Proof (Lemma 2).
The proof proceeds by structural induction on c assuming (A) for our base language:

Q[[∆ ` b[v/X] : τ ]]δ = Q[[∆ ` b : τ ]]δ⊕{X 7→v

.
We use figure 7 and abbreviate D[[D]]δ by γ where appropriate.

c ≡ Success To show: C[[Success]]γ;δ⊕X 7→v = C[[Success[v/X]]]γ;δ. We have C[[Success]]γ;δ⊕X 7→v =
{〈〉} = C[[Success[v/X]]]γ;δ.

c ≡ Failure This case proceeds exactly as the previous except that both sides denote ∅.
c ≡ f(b) To show: C[[f(b)[v/X]]γ;δ = C[[f(b)]]γ;δ⊕X 7→v.

We have:

C[[f(b)[v/X]]γ;δ = C[[f(b[v/X])]]γ;δ

= γ(f)(Q[[b[v/X]]]δ

= γ(f)(Q[[b]]δ⊕X 7→v)(by (A))
= C[[f(b)]]γ;δ⊕X 7→v

c ≡ transmit(X′ | P ). c′ To show: C[[transmit(X′ | P ). c′[v/X]]]γ;δ = C[[transmit(X′ | P ). c′]]γ;δ⊕X 7→v.
We allow α-conversion and may thus assume that X′ is chosen such that X ∩X′ = ∅. We
have:

C[[transmit(X′ | P ). c′[v/X]]]γ;δ =
C[[transmit(X′ | P [v/X]). c′[v/X]]]γ;δ =
{transmit(v′) s | Q[[P [v/X]]]δ⊕X′ 7→v′

= true ∧ s ∈ C[[c′[v/X]]]γ;δ⊕X′ 7→v′} =
{transmit(v) s | Q[[P ]]δ⊕X′ 7→v′⊕X 7→v = true ∧ s ∈ C[[c′]]γ;δ⊕X′ 7→v′⊕X 7→v =
{transmit(v) s | Q[[P ]]δ⊕X 7→v⊕X′ 7→v′ = true ∧ s ∈ C[[c′]]γ;δ⊕X 7→v⊕X′ 7→v′ =
C[[transmit(X′ | P ). c′]]γ;δ⊕X 7→v
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c ≡ c1 + c2 To show: C[[c1 + c2[v/X]]]γ;δ = C[[c1 + c2]]γ;δ⊕X 7→v. We have:

C[[c1 + c2[v/X]]]γ;δ = C[[c1[v/X] + c2[v/X]]]γ;δ

= C[[c1[v/X]]]γ;δ ∪ C[[c2[v/X]]]γ;δ

= C[[c1]]γ;δ⊕X 7→v ∪ C[[c2]]γ;δ⊕X 7→v

= C[[c1 + c2]]γ;δ⊕X 7→v

c ≡ c1 ‖ c2 Similar to ·+ · case.

c ≡ c1; c2 Similar to ·+ · case.

�

Proof (Lemma 1).
We verify that each equation in Figure 8 holds. Note that γ = D[[D]]δ in the following.

C[[e\Failure]]γ;δ = C[[Failure]]γ;δ By definition of the residuation operator we have C[[e\Failure]]γ;δ =

e\∅ = ∅ = C[[Failure]]γ;δ.

C[[e\Success]]γ;δ = C[[Failure]]γ;δ By definition of the residuation operator we have C[[e\Success]]γ;δ =

e\{〈〉} = ∅ = C[[Failure]]γ;δ.

C[[e\f(a)]]γ;δ = C[[e\c[v/X]]]γ;δ This follows from C[[f(a)]]γ;δ = C[[c]]γ;δ⊕X 7→v = C[[c[v/X]]]γ;δ.

We assume (f(X) = c) ∈ D and v = Q[[a]]δ.
We have C[[f(a)]]γ;δ = C[[c]]γ;δ⊕X 7→v by definition of γ and assumption for v. By Lemma 2
this can be rewritten to C[[c[v/X]]]γ;δ, and we are done.

C[[transmit(v)\(transmit(X | P ). c′)]]γ;δ There are two cases to consider:

– δ ⊕ {X 7→ v} |= P .
To show: C[[transmit(v)\(transmit(X | P ). c′)]]γ;δ = C[[c′[v/X]]]γ;δ.
Again we unfold the left-hand side of the equation and the goal is then:

{s′ | ∃s ∈ C[[transmit(X | P ). c′]]γ;δ : transmit(v)s′ = s} = C[[c′[v/X]]]γ;δ.

From the denotational semantics we see that C[[transmit(X | P ). c′]]γ;δ = {transmit(v) s′ |
s′ ∈ C[[c′]]γ;δ⊕X 7→v. What we need to show is then that C[[c′]]γ;δ⊕X 7→v = C[[c′[v/X]]]γ;δ,
which follows immediately from Lemma 2.

– δ ⊕ {X 7→ a} 6 |=P .
To show: C[[transmit(a)\(transmit(X | P ). c′)]]γ;δ = C[[Failure]]γ;δ.
We unfold the left-hand side of the equation using the denotational semantics and the
goal is now to show:

{s′ | ∃s ∈ C[[transmit(X | P ). c′]]γ;δ : transmit(v)s′ = s} = ∅.

Since δ ⊕ {X 7→ a} 6 |=P we know that C[[transmit(X | P ). c′]]γ;δ = ∅, and we are done.

C[[e\(c1 + c2)]]γ;δ = C[[e\c1 + e\c2]]γ;δ Unfolding the left-hand side gives {s′ | ∃s ∈ C[[c1 + c2]]γ;δ :

es′ = s}. The denotation of a choice contract is given by C[[c1 + c2]]γ;δ = C[[c1]]γ;δ ∪C[[c2]]γ;δ.
Any s′ will thus be a trace of c1 or a trace of c2 with a prefix of e removed. The denotation
of the right-hand side is C[[e\c1]]γ;δ ∪C[[e\c2]]γ;δ which unfolds to {s′1 | ∃s ∈ C[[c1]]γ;δ : es′1 =
s} ∪ {s′2 | ∃s ∈ C[[c2]]γ;δ : es′2 = s}. Thus any s′1 or s′2 is a trace of c1 or c2 with the prefix e
removed. We can now conclude that in any case s′ = s′i for 0 < i ≤ 2 as required.



37

C[[e\(c1 ‖ c2)]]γ;δ = C[[e\c1 ‖ c2 + c1 ‖ e\c2]]γ;δ Rewriting the left-hand side of the equation by
definition of the residuation operator we arrive at the following equation:

{s′ | ∃s ∈ C[[c1 ‖ c2]]γ;δ : es′ = s} = C[[e\c1 ‖ c2 + c1 ‖ e\c2]]γ;δ.

Using the definition of the denotational semantics to rewrite the right-hand side we arrive
at:

{s′ | ∃s ∈ C[[c1 ‖ c2]]γ;δ : es′ = s} = C[[e\c1 ‖ c2]]γ;δ ∪ C[[c1 ‖ e\c2]]γ;δ.

From the denotational semantics, we note that the trace set of a parallel contract is an
interleaving of the events from both subcontracts:

{s′ | ∃s ∈ {s′′ | s1 ∈ C[[c1]]γ;δ, s2 ∈ C[[c2]]γ;δ : (s1, s2) s′′} : es′ = s} = . . .

If e is a prefix of s1 we have the trace set C[[e\c1 ‖ c2]]γ;δ and if e is a prefix of s2 we have
the traceset C[[c1 ‖ e\c2]]γ;δ. Combining these two sets we conclude what was required.

C[[e\(c1; c2)]]γ;δ =
{

(e\c1; c2) + e\c2 if D, δ |= Success ⊆ c1

e\c1; c2 otherwise – D, δ |= Success ⊆ c1.

We unfold the left-hand side and the goal becomes:

{s′ | ∃s ∈ {s1s2 | ∃s1 ∈ C[[c1]]γ;δ, s2 ∈ C[[c2]]γ;δ} : es′ = s} = C[[e\c1; c2 + e\c2]]γ;δ.

Unfold the right-hand side

{s′ | ∃s ∈ {s1s2 | ∃s1 ∈ C[[c1]]γ;δ, s2 ∈ C[[c2]]γ;δ} : es′ = s}
=

{s′1s′2 | ∃s′1 ∈ C[[e\c1]]γ;δ, s′2 ∈ C[[c2]]γ;δ} ∪ C[[e\c2]]γ;δ

• In case s1 = 〈〉, we get that es′ = C[[c2]]γ;δ and C[[e\c1]]γ;δ = ∅. Thus we need to
show that: {s′ | ∃s ∈ C[[c2]]γ;δ : es′ = s} = C[[e\c2]]γ;δ, which is immediate from the
definition of residuation.

• If s1 6= 〈〉 there is some s1 in which e occurs as the first event. Thus s = es′1s
′
2,

which means s′ = s′1s
′
2 as required. The added C[[e\c2]]γ;δ are accounted for by the

previous case.
– D, δ |= Success 6 ⊆c1.

We unfold the left-hand side and the goal becomes:

{s′ | ∃s ∈ {s1s2 | ∃s1 ∈ C[[c1]]γ;δ, s2 ∈ C[[c2]]γ;δ} : es′ = s} = C[[e\c1; c2]]γ;δ

Unfold the right-hand side

{s′ | ∃s ∈ {s1s2 | ∃s1 ∈ C[[c1]]γ;δ, s2 ∈ C[[c2]]γ;δ} : es′ = s} = {s′1s′2 | ∃s′1 ∈ C[[e\c1]]γ;δ, s′2 ∈ C[[c2]]γ;δ}

Since 〈〉 /∈ C[[c1]]γ;δ, we know that e ∈ s1 from which we immediately see that s2 = s′2;
thus we just need to show that

{s′ | ∃s ∈ {s1 | ∃s1 ∈ C[[c1]]γ;δ} : es′ = s} = {s′1 | ∃s′1 ∈ C[[e\c1]]γ;δ}

. That is,
{s′ | ∃s ∈ C[[c1]]γ;δ} : es′ = s} = C[[e\c1]]γ;δ.

Which is exactly the definition of the residuation operator.

Proof (Proposition 1).
We show ∀D, δ, δ′, c : δ′ `δ

D 〈〉 : c ⇐⇒ D ` c nullable. From this the proposition follows by
Theorem 1.
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“=⇒”: To show ∀D, δ, δ′, c : δ′ `δ
D 〈〉 : c =⇒ D ` c nullable we proceed by induction on

derivations of δ′ `δ
D s : c.

δ′ `δ
D 〈〉 : Success We need to show that D ` Success nullable. This follows immediately
from the nullability axiom for Success.

X 7→ v `δ
D s : c (f(X) = c) ∈ D,v = Q[[a]]δ⊕δ′

δ′ `δ
D s : f(a)

Assume D ` c nullable (induction

hypothesis). We need to show that D ` f(a) nullable, which follows from the nullability
inference rule for f(a).

δ ⊕ δ′′ |= P δ′′ `δ
D s : c (δ′′ = δ′ ⊕ {X 7→ v})

δ′ `δ
D transmit(v) s : transmit(X|P ). c

We need to show D ` transmit(X|P ). c nullable

if transmit(v) s = 〈〉. This implication is vacuously true since the assumption transmit(v) s =
〈〉 is false.

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2 (s1, s2) s

δ′ `δ
D s : c1 ‖ c2

Assume (〈〉, 〈〉)  s; that is, s = 〈〉. As-

sume furthermore D ` c1 nullable and D ` c2 nullable. We need to show that D `
c1 ‖ c2 nullable, which follows from the nullability inference rule for c1 ‖ c2.

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2

δ′ `δ
D s1s2 : c1; c2

Immediate from nullability inference rule for c1; c2.

δ′ `δ
D s : c1

δ′ `δ
D s : c1 + c2

Immediate from first nullability inference rule for c1 + c2.

δ′ `δ
D s : c2

δ′ `δ
D s : c1 + c2

Immediate from second nullability inference rule for c1 + c2.

“⇐=”: To show ∀D, c : D ` c nullable =⇒ ∀δ, δ′.δ′ `δ
D 〈〉 : c we proceed by induction on

derivations of D ` c nullable.
D ` c nullable (f(X) = c) ∈ D

D ` f(a) nullable
Assume ∀δ, δ′.δ′ `δ

D 〈〉 : c (induction hypothesis).

We need to show ∀δ, δ′.δ′ `δ
D 〈〉 : f(a). Let δ, δ′ be arbitrary environments for D

and f(a). From the induction hypothesis it follows that X 7→ v `δ
D 〈〉 : c where v =

Q[[a]]δ⊕δ′ . And, using the satisfaction inference rule for contract application, we arrive
at δ′ `δ

D 〈〉 : f(a).
D ` c nullable

D ` c + c′ nullable
Immediate.

D ` c′ nullable
D ` c + c′ nullable

Immediate.

D ` Success nullable Let δ, δ′ be arbitrary environments. Using the satisfaction rule for
Success we obtain δ′ `δ

D 〈〉 : Success.
D ` c nullable D ` c′ nullable

D ` c ‖ c′ nullable
Immediate.

D ` c nullable D ` c′ nullable
D ` c; c′ nullable

Immediate.

Proof (Lemma 3).
This is proved by straightforward structural induction on the definition of contracts.
The only interesting cases are the cases of a contract application f(a), where (f(X) = c) ∈

D, and sequential composition.
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In the first case, we can use the assumption of the Lemma that D ` c guarded, which, by
rule application, immediately implies that D ` f(a) guarded.

In the second case, we have the induction hypotheses D ` c1 guarded and D ` c2 guarded.
Now, either D ` c1 nullable or D 6` c1 nullable. In either case, we have a rule for concluding
that D ` c1; c2 guarded.

Proof (Theorem 2). (Sketch)

1. We show D, δ `D c
e−→ c′ =⇒ D, δ |= e\c = c′ by induction on derivations of D, δ `D

c
e−→ c′. Each case follows immediately from Lemma 1. In the case of sequential composition

we also require Proposition 1.
2. Note that, by Lemma 3, D ` c guarded if D is guarded. It is sufficient to show D `

c guarded =⇒ ∀δ∀e∃c′.D, δ `D c
e−→ c′. The fact that c′ is guarded in context D follows

from Lemma 3, and it is a routine matter to extend the proof cases with a check of
uniqueness of c′.
We cannot prove D ` c guarded =⇒ ∀δ∀e∃c′.D, δ `D c

e−→ c′ by induction on the definition
of guaraded contracts, however, since the induction hypothesis is not strong enough in the
case of contract application: We would require that c[v/X] has a residual contract for arbi-
trary δ, e, but the induction hypothesis only yields that that holds for c. Consequently, we
strengthen the lemma and prove D ` c guarded =⇒ ∀δ, e,X,v∃c′.D, δ `D c[v/X] e−→ c′.
All cases are straightforward except the second rule for sequential composition: To make the
induction proof go through we require D 6` c[/X] nullable the last deterministic reduction
rule, but the case only carries the assumption D 6` c nullable. Consequently, if we can show
that D ` c[/X] nullable =⇒ D ` c nullable, we are done.
Claim: D ` c[/X] nullable =⇒ D ` c nullable.
Proof of claim: By structural induction on c. All cases are straightforward except the rule
for contract application. In that case we need to show D ` f(a[v/X]) nullable =⇒ D `
f(a) nullable. Assume D ` f(a[v/X]) nullable. By inspection of the rules for nullability
we can see that this must have been concluded from D ` c nullable where (f(Y ) = c) ∈ D.
By the same rule we can infer, however, D ` f(a) nullable, and we are done.

Proof (Theorem 3). We prove the two statements

1. If D, δ `N c
e−→ c′ then D, δ |= c′ ⊆ e\c

2. If D, δ `N c
τ−→ c′ then D, δ |= c′ ⊆ c

by induction on the height of the derivation of D, δ `N c
e−→ c′ and D, δ `N c

τ−→ c′, respec-
tively. We use definitions in Figures 7, 8 and 12. “Assume...” is used as short-hand for “Assume
a derivation with the conclusion...”. Finally, γ abbreviates D[[D]]δ in the following.

Proving 1:

– Assume D, δ `N Success e−→ Failure. To show C[[Failure]]γ;δ ⊆ C[[e\Success]]γ;δ = C[[Failure]]γ;δ.
Done.

– Assume D, δ `N Failure e−→ Failure. To show C[[Failure]]γ;δ ⊆ C[[e\Failure]]γ;δ = C[[Failure]]γ;δ.
Done.

– Assume D, δ `N transmit(X | P ). c
transmit(v)−→ c[v/X] and also δ ⊕X 7→ v |= P where v =

Q[[a]]δ. To show C[[c[v/X]]]γ;δ ⊆ C[[(transmit(v)\transmit(X | P ). c)]]γ;δ = C[[c[v/X]]]γ;δ.
Done.

– Assume D, δ `N transmit(X | P ). c
transmit(v)−→ Failure and also δ ⊕X 7→ v 6 |=P where v =

Q[[a]]δ. To show C[[Failure]]γ;δ ⊆ C[[(transmit(v)\transmit(X | P ). c)]]γ;δ = C[[Failure]]γ;δ.
Done.
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– Assume D, δ `N c ‖ c′
e−→ d ‖ c′ and D, δ `N c

e−→ d. To show C[[d ‖ c′]]γ;δ ⊆ C[[e\(c ‖ c′)]]γ;δ =
C[[e\c ‖ c′ + c ‖ e\c′]]γ;δ = C[[e\c ‖ c′]]γ;δ ∪ C[[c ‖ e\c′]]γ;δ. By the IH, C[[d]]γ;δ ⊆ C[[e\c]]γ;δ so
in particular C[[d ‖ c′]]γ;δ ⊆ C[[e\c ‖ c′]]γ;δ, which is sufficient.

– Assume D, δ `N c ‖ c′
e−→ c ‖ d′ and D, δ `N c′

e−→ d′. Analogous to the above case.
– Assume D, δ `N c; c′ e−→ d; c′ and also D, δ `N c

e−→ d. To show C[[d; c′]]γ;δ ⊆ C[[e\(c; c′)]]γ;δ.
If D, δ |= Success ⊆ c then C[[e\(c; c′)]]γ;δ = C[[(e\c; c′) + e\c′]]γ;δ = C[[e\c; c′]]γ;δ ∪C[[e\c′]]γ;δ.
By the IH, C[[d]]γ;δ ⊆ C[[e\c]]γ;δ so in particular C[[d; c′]]γ;δ ⊆ C[[e\c; c′]]γ;δ, which is sufficient.

– Assume D, δ `N c
τ−→ c′ and D, δ `N c′

e−→ c′′. By the IH, we have C[[c′]]γ;δ ⊆ C[[c]]γ;δ and
C[[c′′]]γ;δ ⊆ C[[e\c′]]γ;δ. We need to show C[[c′′]]γ;δ ⊆ C[[e\c]]γ;δ. But this follows from the IH
and monotonicity of residuation: C[[c′′]]γ;δ ⊆ C[[e\c′]]γ;δ ⊆ C[[e\c]]γ;δ.

Proving 2:

– Assume D, δ `N f(a) τ−→ c[V /X] where (f(X) = c) ∈ D and v = Q[[a]]δ. To show
C[[c[v/X]]]γ;δ ⊆ C[[f(a)]]γ;δ = γ(f)(v), which holds by definition of γ and Lemma 2.

– Assume D, δ `N c + c′
τ−→ c. To show C[[c]]γ;δ ⊆ C[[c + c′]]γ;δ = C[[c]]γ;δ ∪ C[[c′]]γ;δ. Done.

– Assume D, δ `N c + c′
τ−→ c′. Analogous to the above case.

– Assume D, δ `N c ‖ c′
τ−→ d ‖ c′ and D, δ `N c

τ−→ d. To show C[[d ‖ c′]]γ;δ ⊆ C[[c ‖ c′]]γ;δ,
which follows easily by the IH.

– Assume D, δ `N c ‖ c′
τ−→ c ‖ d′ and D, δ `N c′

τ−→ d′. To show C[[c ‖ d′]]γ;δ ⊆ C[[c ‖ c′]]γ;δ,
which follows easily by the IH.

– Assume D, δ `N Success ‖ c
τ−→ c. To show C[[c]]γ;δ ⊆ C[[Success ‖ c]]γ;δ, holds trivially.

– Assume D, δ `N c ‖ Success τ−→ c. To show C[[c]]γ;δ ⊆ C[[c ‖ Success]]γ;δ, holds trivially.
– Assume D, δ `N Success; c′ τ−→ c′. To show C[[c′]]γ;δ ⊆ C[[Success; c′]]γ;δ, holds trivially.
– Assume D, δ `N c; c′ τ−→ d; c′ and D, δ `N c

τ−→ d. To show C[[d; c′]]γ;δ ⊆ C[[c; c′]]γ;δ, which
follows easily by the IH.

�

Proof (Theorem 4). The proof is by induction on the derivation of D, δ `D c
e−→ c′.

– D, δ `D Success e−→ Failure. Clearly no τ -transitions can be taken in the non-deterministic
reduction system. However, there is just one contract c1 such that D, δ `N Success e−→ c1

which is Failure. We must then show: D, δ |= Failure ⊆ Failure. By definition D, δ |=
Failure = ∅, so we must show ∅ ⊆ ∅ which is trivially true.

– D, δ `D Failure e−→ Failure. Again no τ -transitions are possible. There is just one contract
c1 such that D, δ `N Failure e−→ c1 namely Failure. We must show D, δ |= Failure ⊆ Failure,
which is true since ∅ ⊆ ∅.

– D, δ `D transmit(X|P ). c
transmit(v)−→ c[v/X] where δ ⊕X 7→ v |= P and v = Q[[a]]δ. In this

case we can only do the reduction D, δ `N transmit(X|P ). c
transmit(v)−→ c[v/X]. Now we

must show D, δ |= c[v/X] ⊆ c[v/X], which is obviously true.

– D, δ `D transmit(X|P ). c
transmit(v)−→ Failure and δ ⊕X 7→ v 6 |=P where v = Q[[a]]δ. No

τ -transitions are possible and only one contract c1 exists such that

D, δ `D transmit(X|P ). c
transmit(v)−→ c1,

so c1 = Failure. This means we must show D, δ |= c[v/X] ⊆ c[v/X] which clearly holds.
– D, δ `D f(a) e−→ c′. This implies that (f(X) = c) ∈ D and D, δ `D c[v/X] e−→ c′ with v =
Q[[a]]δ. By a derivation of D, δ `D c[v/X] e−→ c′ we use the IH to get contracts c1, . . . , cn

such that D, δ `N c[v/X] τ∗−→ c′′i
e−→ c′ and D, δ |= c′ ⊆

∑n
i=1 ci. However we need to

show D, δ `N f(a) τ∗−→ c′′i
e−→ ci and c′ ⊆

∑n
i=1 ci, the latter of which follows directly

from the IH. By the non-deterministic reduction rules, f(a) has just one reduction D, δ `N

f(a) τ−→ c[v/X]. Thus we can extend all reductions of D, δ `N c[v/X] τ∗−→ c′′i
e−→ ci with

one more τ -transition giving reductions D, δ `N f(a) τ∗−→ c′′i
e−→ ci for all 0 < i ≤ n.
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– D, δ `D c + c′
e−→ d + d′. This implies that D, δ `D c

e−→ d and D, δ `D c′
e−→ d′. From

the non-deterministic reduction rules we see that c + c′ may be reduced by a τ -transition
into either c or c′. By the IH we then have contracts d0, . . . , dn and d′0, . . . , d

′
m such that

D, δ `N c
τ∗−→ d′′i

e−→ di for 0 < i ≤ n, D, δ |= d ⊆
∑n

i=1 di and D, δ `N c′
τ∗−→ d′′′j

e−→ d′j
for 0 < j ≤ m, D, δ |= d ⊆

∑m
j=1 dj . Thus we can extend the non-deterministic reductions

of c and c′ to get reductions of c+c into contracts c0, . . . , cn+m. That is: there are contracts,
ci such that D, δ `N c + c′

τ∗−→ c′′i
e−→ ci with 0 < i ≤ m+n. As seen from the IH we know

that D, δ |= d ⊆
∑n

i=1 di and D, δ |= d ⊆
∑m

j=1 dj . Taking the union of these we get
D, δ |= d

⋃
d′ ⊆

∑n
i=1 di +

∑m
j=1 dj . By definition this is D, δ |= d + d′ ⊆

∑m+n
i=1 di (given

proper enumeration of contracts in di and dj which is the desired goal.
– D, δ `D c ‖ c′

e−→ d ‖ c′ + c ‖ d′. By a derivation D, δ `D c
e−→ d we use the IH to get

contracts di such that c
τ∗−→ c′′i

e−→ di and D, δ |= d ⊆
∑n

i=1 di. Then use the left · ‖ ·-
introduction rule to get contracts di ‖ c′ such that c ‖ c′

τ∗−→ c′′i ‖ c′
e−→ di ‖ c′ and

D, δ |= d ‖ c′ ⊆
∑n

i=1 di ‖ c′. By a derivation D, δ `D c′
e−→ d′ we now again use the IH

to get contracts d′i such that c′
τ∗−→ c′′′i

e−→ d′i and D, δ |= d′ ⊆
∑m

i=1 d′i. Then use the
right · ‖ ·-introduction rule to get contracts c ‖ d′i such that c ‖ c′

τ∗−→ c ‖ c′′′i
e−→ c ‖ d′i

and D, δ |= c ‖ d′ ⊆
∑m

i=1 c ‖ d′i. Taking all contracts di ‖ c′ and c ‖ d′i we need to show
D, δ |= d ‖ c′ + c ‖ d′ ⊆

∑n
i=1 di ‖ c +

∑m
i=1 c ‖ d′i which follows directly by the above.

– D, δ `D c; c′ e−→ d; c′ + d′ and D ` c nullable. There are two possible reductions of c; c′

under the non-deterministic reduction rules. Either D, δ `N c
τ∗−→ Success and so D, δ `N

Success; c′ τ−→ c′ or D, δ `N c
τ∗−→ cp

e−→ dp where cp 6= Success and then
D, δ `N c; c′ τ∗−→ cf

e−→ dp.
In the former case, by a derivation of D, δ `D c′

e−→ d we get by the IH that there exist
contracts d′i such that c′

τ∗−→ c′′
e−→ d′i and D, δ |= d′ ⊆

∑n
i=1 d′i. Taking cp = c′′ and

dp = d.
In the latter case there is no sequence of τ -transitions that makes c = Success so all
contracts dq such that c; c′ τ∗−→ cq

e−→ dq must have the form di; c′. By a derivation
D, δ `D c

e−→ d the IH gives that there are contracts di such that c
τ∗−→ c′′′

e−→ di and
D, δ |= d ⊆

∑m
i=1 di. This implies D, δ `N c; c′ τ∗−→ c′′′′

e−→ di; c′ for 0 < i ≤ m and
furthermore that D, δ |= d; c′ ⊆

∑m
i=1 di; c′.

We have thus shown that there are contracts ci such that D, δ `N c; c′ τ∗−→ c′′
e−→ ci and

that ci is either d′i or di; c′. We still need to show that D, δ |= d; c′ + d ⊆
∑k

i=1 ci; that
is: D, δ |= d; c′ + d ⊆

∑m
i=1 di; c′ +

∑n
i=1 d′i. This follows directly by the already noted fact

that by the IH D, δ |= d; c′ ⊆
∑m

i=1 di; c′ and D, δ |= d′ ⊆
∑n

i=1 d′i
– D, δ `D c; c′ e−→ d; c′ and D 6` c nullable. To show: D, δ `N c; c′ τ∗−→ c′′i

e−→ ci and D, δ |=
d; c′ ⊆

∑n
i=1 ci. By a derivation D, δ `D c

e−→ d the IH yields contracts d0, . . . , dn for
0 < i ≤ n such that D, δ `N c

τ∗−→ c′′′i
e−→ di and D, δ |= d ⊆

∑n
i=1 di. Since D 6` c nullable

c 6= Success so no number of τ -reductions can make c; c′ = c′. The form of all ci must then
be di; c′. The goal is then to show D, δ |= d; c ⊆ di; c′ which follows by D, δ |= d ⊆

∑n
i=1 di.

�

Proof (Proposition 2). By induction on the derivation of D, δ `C c
τ−→ c′.

(f(X) = c) ∈ D,v = Q[[a]]δ

D, δ `C f(a) τ−→ c[v/X]
Here, we have

C[[f(a)]]D[[D]]δ;δ = D[[D]]δ(f)(Q[[a]]δ) = C[[c[a/X]]]D[[D]]δ;δ,

as desired.
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D, δ `C c
τ−→ d

D, δ `C c + c′
τ−→ d + c′

In this case, C[[d + c′]]D[[D]]δ;δ = C[[d]]D[[D]]δ;δ ∪ C[[c′]]D[[D]]δ;δ =

C[[c]]D[[D]]δ;δ ∪ C[[c′]]D[[D]]δ;δ, where the last equality follows from the IH. But C[[c]]D[[D]]δ;δ ∪
C[[c′]]D[[D]]δ;δ = C[[c + c′]]D[[D]]δ;δ, concluding the proof of the case.

D, δ `C c′
τ−→ d′

D, δ `C c + c′
τ−→ c + d′

As the previous case.

D, δ `C c
τ−→ d

D, δ `C c ‖ c′
τ−→ d ‖ c′

We have that C[[d ‖ c′]]D[[D]]δ;δ equals

{
s : s ∈ Tr | ∃s1 ∈ C[[d]]D[[D]]δ;δs2 ∈ C[[c′]]D[[D]]δ;δ. (s1, s2) s

}
By the IH, we gather that {t ∈ C[[d]]D[[D]]δ} equals {s′ ∈ C[[c]]D[[D]]δ}, whence

{s : s ∈ Tr | ∃s1 ∈ C[[d]]D[[D]]δ;δs2 ∈ C[[c′]]D[[D]]δ;δ. (s1, s2) s}

equals {
s : s ∈ Tr | ∃s1 ∈ C[[c]]D[[D]]δ;δs2 ∈ C[[c′]]D[[D]]δ;δ. (s1, s2) s

}
as desired.

D, δ `C c′
τ−→ d′

D, δ `C c ‖ c′
τ−→ c ‖ d′

As the previous case.

D, δ `C Success ‖ c
τ−→ c We have C[[Success]]D[[D]]δ;δ = {〈〉}, and thus obtain {s : s ∈ Tr |

∃s1 ∈ C[[Success]]D[[D]]δ;δs2 ∈ C[[c′]]D[[D]]δ;δ. (s1, s2)  s} = {s′ : s′ ∈ C[[c′]]D[[D]]δ;δ} =
C[[c′]]D[[D]]δ;δ, as desired.

D, δ `C c ‖ Success τ−→ c As the previous case.

D, δ `C c
τ−→ d

D, δ `C c; c′ τ−→ d; c′
We have C[[c; c′]]D[[D]]δ;δ = {ss′ : s ∈ Tr , s′ ∈ Tr | s ∈ C[[c]]D[[D]]δ;δ ∧

s′ ∈ C[[c′]]D[[D]]δ;δ}. But by the IH, we gather that C[[c]]D[[D]]δ;δ = C[[d]]D[[D]]δ;δ, whence {ss′ :
s ∈ Tr , s′ ∈ Tr | s ∈ C[[c]]D[[D]]δ;δ ∧ s′ ∈ C[[c′]]D[[D]]δ;δ} = {ss′ : s ∈ Tr , s′ ∈ Tr | s ∈
C[[d]]D[[D]]δ;δ ∧ s′ ∈ C[[c′]]D[[D]]δ;δ}.

D, δ `C Success; c′ τ−→ c′ As the previous case, noting that C[[Success]]D[[D]]δ;δ = {〈〉}.

D, δ `C c
τ−→ c′

δ `C letrec D in c
τ−→ letrec D in c′

Here, C[[letrec D′ in c]]δ = C[[c]]D[[D]]δ;δ for some D′.

By the IH, we have C[[c]]D[[D]]δ;δ = D[[c′]]D[[D]]δ;δ and hence
C[[letrec D in c]]δ = C[[letrec D in c′]]δ, as desired.

�

Proof (Proposition 3). “If”. To show: For all D, δ, c, c′: D, δ � c = Success if D, δ `C c
τ∗−→ Success.

A trivial induction on the length of the τ -reduction sequences using Proposition 2 furnishes
C[[c]]D[[D]]δ;δ = C[[Success]]D[[D]]δ;δ, and the result follows.

“Only if”: To show: For all D, δ, c, c′: D, δ � c = Success only if D, δ `C c
τ∗−→ Success.

Note that D, δ � c = Success implies D |= c nullable and, by Proposition 1, D ` c nullable.
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Consequently, the result follows if we can prove D ` c nullable =⇒ (D, δ � c = Success =⇒
D, δ `C c

τ∗−→ Success).
Claim: The set of derivations of D ` c nullable is finite.
Proof of claim: Observe that all contracts c′ that can occur in a derivation of D ` c nullable

must occur in either D or c. Furthermore there no contract can occur twice on any path in a
derivation tree. Thus the depth of any derivation tree of D ` c nullable is bounded by the sum
of the sizes of D and c. Since, furthermore, the outdegree of derivation trees is bounded by 2,
we can conclude that the set of derivation trees for D ` c nullable is finite.

Let us define the maximal derivation depth of a derivable judgement D ` c nullable to be
the maximal depth of any of the derivations of D ` c nullable. By the claim above this is
well-defined.

We shall now prove by Noetherian (well-founded) induction on the maximal derivation

depth of D ` c nullable that D, δ � c = Success implies D, δ `C c
τ∗−→ Success. We do this by

cases on the syntax of c.

– Success.
In this case, we have D, δ `C Success τ0

−→ Success and we are done.
– c1 + c2.

Let D ` c1 + c2 nullable with maximal derivation depth n. Assume D, δ � c1 + c2 =
Success. It follows that both D, δ � c1 = Success and D, δ � c1 = Success and thus
D |= c1 nullable and D |= c2 nullable. By Proposition 1 we thus have that D ` c1 nullable
and D ` c2 nullable. Since both D ` c1 nullable and D ` c2 nullable yield a derivation
of D ` c1 + c2 nullable it follows that the maximal derivation depths of D ` c1 nullable
and D ` c2 nullable are less than n. Consequently we can apply the induction hypotheses
to them and obtain that D, δ `C c1

τ∗−→ Success and D, δ `C c2
τ∗−→ Success. By induc-

tion on the combined length of the two reductions, it can now be shown that D, δ `C

c1 + c2
τ∗−→ Success + Success. Now, we can apply Rule D, δ `C Success + Success τ−→ Success

and we are done.
– c1 ‖ c2.

Let D ` c1 ‖ c2 nullable with maximal derivation depth n. Assume D, δ � c1 ‖ c2 = Success.
It follows that both D, δ � c1 = Success and D, δ � c1 = Success.
D ` c1 ‖ c2 nullable can only be derived from D ` c1 nullable and D ` c2 nullable, each
of which consequently has maximal derivation depth less than n. We can thus apply the
induction hypothesis to D ` c1 nullable and D ` c2 nullable, which yield that D, δ `C

c1
τ∗−→ Success and D, δ `C c2

τ∗−→ Success. By induction on the combined length of the two
reductions it can now be shown that D, δ `C c1 ‖ c2

τ∗−→ Success ‖ Success. Using one of the

two rules for eliminating a parallel Success, we thus arrive at D, δ `C c1 ‖ c2
τ∗−→ Success

and we are done.
– c1; c2.

Similar to above.
– f(a).

Let D ` f(a) nullable with maximal derivation depth n where (f(X) = c) ∈ D. Assume
D, δ � f(a) = Success. It follows that D, δ � c[v/X] = Success where v = Q[[a]]δ. Since
D ` f(a) nullable can only be derived from D ` c nullable it follows that the maximal
derivation depth of D ` c nullable is less than n. Furthermore, it can be shown that for
each derivation of D ` c nullable there is a derivation of D ` c[v/X] nullable equal depth.
Consequently the maximal derivation depth of D ` c[v/X] nullable is also less than n,

and we can apply the induction hypothesis to obtain that D, δ `C c[v/X] τ∗−→ Success.

Prefixing this reduction sequence with Rule D, δ `C f(a) τ∗−→ c[v/X] we arrive at D, δ `C

f(a) τ∗−→ Success and we are done.
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– Other cases. In all other cases D ` c nullable is not derivable.

Proof (Lemma 4). We show the lemma by proving the stronger result that τ -reduction is
normalizing and confluent.
First we show that all guarded contracts are τ -normalizing, i.e., there exists a (τ -normal form)

c′ s.t. D, δ `C c
τ∗−→ c′ and for no c′′ D, δ `C c′

τ−→ c′′. Proof by induction on the (minimal)
height of the derivation of guardedness of c. Use Figure 10.

– Assume D ` Success guarded. Clearly, there is no rule such that Success reduces via τ , so
we must already have a τ -normal form.

– Assume D ` Failure guarded. Analogous to the case above.
– Assume D ` transmit(X | P ). c guarded. Analogous to the cases above.

– Assume
D ` c guarded (f(X) = c) ∈ D

D ` f(a) guarded
. Since (f(X) = c) ∈ D we can build a deriva-

tion of D, δ `C f(a) τ−→ c[v/X] where v = Q[[a]]δ. It is left to show that c[v/X] is τ -
normalizing.
Claim: For any derivation of D ` c guarded there is a derivation of D ` c[/X] guarded of
equal height.
Proof of claim: By induction on guardedness.
By the above claim it follows that the height of derivation of D ` c[/X] guarded is the same
as the height of D ` c guarded, which is less than the height of D ` f(a) guarded. Applying
the induction hypothesis to D ` c[/X] guarded we get that c[/X] is τ -normalizing and
since D, δ `C f(a) τ−→ c[/X] also that f(a) is τ -normalizing.

– Assume
D ` c guarded D ` c′ guarded

D ` c + c′ guarded
. There are three cases to consider.

1. Suppose
D, δ `C c

τ−→ d

D, δ `C c + c′
τ−→ d + c′

. By the IH we are done.

2. Suppose
D, δ `C c′

τ−→ d′

D, δ `C c + c′
τ−→ c + d′

. Again by the IH we are done.

3. Suppose D, δ `C Success + Success τ−→ Success. But Success is already a τ normal form
so we are done.

– Assume
D ` c guarded D ` c′ guarded

D ` c ‖ c′ guarded
. There are four cases to consider.

1. Suppose
D, δ `C c

τ−→ d

D, δ `C c ‖ c′
τ−→ d ‖ c′

. By the IH on the two premisses of the derivation

of guardedness of c ‖ c′, we obtain what was required.

2. Suppose
D, δ `C c′

τ−→ d′

D, δ `C c ‖ c′
τ−→ c ‖ d′

. Analogous to the case just shown.

3. Suppose D, δ `C Success ‖ c
τ−→ c. By assumption D ` c guarded and by the IH we are

done.
4. Suppose D, δ `C c ‖ Success τ−→ c. By assumption, we have D ` c′ guarded and by the

IH we are done.

– Assume
D ` c guarded D ` c′ guarded

D ` c; c′ guarded
. There are two cases to consider.

1. Suppose
D, δ `C c

τ−→ d

D, δ `C c; c′ τ−→ d; c′
. Easy, by the IH.

2. Suppose D, δ `C Success; c′ τ−→ c′. Immediate by the IH.

Second, we prove confluence by showing that the diamond property holds for τ -reduction,
i.e. if D, δ `C c

τ−→ c′ and D, δ `C c
τ−→ c′′, then there exists a d with D, δ `C c′

τ=

−→ d and
D, δ `C c′′

τ=

−→ d. The proof is by induction on the derivation of D, δ `C c
τ−→ c′.
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–
(f(X) = c) ∈ D,v = Q[[a]]δ

D, δ `C f(a) τ−→ c[v/X]
.

No other rules match any subterm of f(a), and we must hence have c′ = c′′, whence the
result follows.

–
D, δ `C c1

τ−→ d1

D, δ `C c1 + c2
τ−→ d1 + c2

.

If the τ -rewrite step D, δ `C c
τ−→ c′′ takes place inside c, we have c′′ = c′′1 + c2, and

the IH furnishes a d′1 such that D, δ `C c′′1
τ=

−→ d′1 and D, δ `C d1
τ=

−→ d′1. We hence have
D, δ `C c′

τ=

−→ d′1 + c2 and D, δ `C c′′
τ=

−→ d′1 + c2, as desired.

–
D, δ `C c2

τ−→ d2

D, δ `C c1 + c2
τ−→ c1 + d2

.

As the previous case.
– D, δ `C Success + Success τ−→ Success.

In this case, we must have c′ = c′′, and the result follows.

–
D, δ `C c

τ−→ d

D, δ `C c ‖ c′
τ−→ d ‖ c′

.

Exactly as the case
D, δ `C c1

τ−→ d1

D, δ `C c1 + c2
τ−→ d1 + c2

.

–
D, δ `C c′

τ−→ d′

D, δ `C c ‖ c′
τ−→ c ‖ d′

. As the previous case.

– D, δ `C Success ‖ d
τ−→ d.

In this case, D, δ `C c
τ−→ c′′ must be an application of either of the rules D, δ `C

c ‖ Success τ−→ c, or
D, δ `C d

τ−→ d′

D, δ `C c1 + d
τ−→ c1 + d′

. In the first case, we have c′ = Success =

c′′, and we are done. in the second case, we have c1 = Success, and thus D, δ `C d
τ−→ d′

and D, δ `C c1 + d
τ−→ d′, as desired.

– D, δ `C c ‖ Success τ−→ c.
Symmetric to the previous case.

–
D, δ `C c1

τ−→ d1

D, δ `C c1; c2
τ−→ d1; c2

.

If the reduction step D, δ `C c
τ−→ c′′ takes place inside c1, then c′′ = d′′1 ; c2, and the IH

furnishes existence of a d′1 such that D, δ `C d1
τ=

−→ d′1 and D, δ `C d1
τ=

−→ d′1. Then, d′1; c2 is
a common τ -reduct of c′ and c′′, and the desired result follows. Otherwise, D, δ `C c

τ−→ c′′

is an application of the rule D, δ `C Success; c′ τ−→ c′, which is impossible, since Success is
a τ -normal form, i.e. it cannot be the case that D, δ `C c1

τ−→ d1.
– D, δ `C Success; c′ τ−→ c′.

Symmetric to the previous case.

�

Proof (Theorem 5). “If”: By induction on the height of the derivation of D, δ `C c
de−→ c′.

“Only if”: By induction on the height of the derivation of D, δ `N c
e−→ c′.

Proving “Only if”: (note that we only consider non-τ -derivations)

– Assume D, δ `N Success e−→ Failure. From the reduction semantics of we see that there is
just one possible reduction D, δ `C Success e−→ c′ giving c′ = Failure so c′′ = Failure.

– Assume D, δ `N Failure e−→ Failure. Analogous.
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– Assume
δ ⊕X 7→ v |= P,v = Q[[a]]δ

D, δ `N transmit(X | P ). c
transmit(v)−→ c[v/X]

. Again we see that there is a

unique reduction of the transmit(X|P ). c-contract and we have,

δ ⊕X 7→ v |= P,v = Q[[a]]δ

D, δ `C transmit(X | P ). c
transmit(v)−→ c[v/X]

by which we conclude c′′ = c[v/X].

– Assume
δ ⊕X 7→ v |= P,v = Q[[a]]δ

D, δ `N transmit(X|P ). c
transmit(v)−→ Failure

. Analogous.

– Assume
D, δ `N c

e−→ d

D, δ `N c ‖ c′
e−→ d ‖ c′

. By the IH we gather that D, δ `C c
de−→ d. We can

extend d with l and build a unique derivation
D, δ `C c

de−→ d

D, δ `C c ‖ c′
lde−→ d ‖ c′

.

– Assume
D, δ `N c′

e−→ d′

D, δ `N c ‖ c′
e−→ c ‖ d′

. Analogously by extending d with r.

– Assume
D, δ `N c

e−→ d

D, δ `N c; c′ e−→ d; c′
. By the IH we have a derivation D, δ `C c

e−→ d. Thus

we can construct the unique derivation
D, δ `C c

e−→ d

D, δ `C c; c′ e−→ d; c′
.

Proving “If”:

– Assume D, δ `C Success e−→ Failure. There is no d in this case, and we can immediately
build D, δ `N Success e−→ Failure, also choosing no τ -transitions for the first part.

– Assume D, δ `C Failure e−→ Failure. Analogous.

– Assume
δ ⊕X 7→ v |= P,v = Q[[a]]δ

D, δ `C transmit(X | P ). c
transmit(v)−→ c[v/X]

. Take no d and choose no

τ -transitions. Then immediate.

– Assume
δ ⊕X 7→ v 6 |=P,v = Q[[a]]δ

D, δ `C transmit(X|P ). c
transmit(a)−→ Failure

. Analogous.

– Assume
D, δ `C c

de−→ c′

D, δ `C c + d
fde−→ c′

. Must build a derivation of D, δ `N c + d
τ∗−→ c′′

e−→ c′.

By IH: D, δ `N c
τ∗−→ c′′

e−→ c′. So we just need the first part. Clearly, we have D, δ `N

c + d
τ−→ c. Thus, by choosing c = c′′ and exactly one τ -transition, we are done.

– Assume
D, δ `C d

de−→ d′

D, δ `C c + d
sde−→ d′

. Analogous.

– Assume
D, δ `C c

de−→ d

D, δ `C c ‖ c′
lde−→ d ‖ c′

. By using the IH, taking c = c′′, and making no τ -

transitions in the first part, we are done.

– Assume
D, δ `C c′

de−→ d′

D, δ `C c ‖ c′
rde−→ c ‖ d′

. Analogous.

– Assume
D, δ `C c

e−→ d

D, δ `C c; c′ e−→ d; c′
. Analogous.
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– Assume
D, δ `C c

e−→ c′

δ `C letrec D in c
e−→ letrec D in c′

. Analogous.

It is obvious that, if d exists in the above case, it is unique. Furthermore, for all c′′ such
that D, δ `C c

de−→ c′′ we have c′ = c′′. Again, it is obvious.
�
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