
Expressing Workflow Patterns in CCS

Christian Stefansen

Department of Computer Science, University of Copenhagen (DIKU)
Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark

Abstract. There is an ongoing debate in the workflow community about the rela-
tive merits of Petri nets andπ-calculus for workflow modeling. Recently, van der
Aalst presented some challenges to model workflow inπ-calculus. This paper
responds to those challenges by showing how to code the 20 most commonplace
workflow patterns in CCS (a subset ofπ-calculus), and describes two new work-
flow patterns that were identified in the process. The applicability ofπ-calculus
to the workflow modeling domain is briefly discussed and a newoverlayoperator
is discussed with applications to workflow descriptions.

1 Introduction

A prolonged debate has been going on about the relative merits of Petri nets [12] and
π-calculus [11] for workflow modeling [21, 17]. Nonetheless, very little of this debate
has been published or put in writing elsewhere. Recently van der Aalst presented seven
challenges for those arguing in favor ofπ-calculus as a formal foundation for workflow
systems [17]. This paper focuses on one of these challenges, namely:

Challenge 6 Let the people that advocate Pi calculus exactly show how existing pat-
terns can be modeled in terms of Pi calculus.

Whatever one’s beliefs, a concrete encoding of the 20 workflow patterns will pro-
vide a basis for a more informed debate and make it easier for implementers to make a
choice of formal foundation.

It is important to notice, however, that these workflow patterns are abstract patterns
that do not make any assumptions about the data flow. This separation of concerns,
besides being an important design principle, allows a clear and focused comparison
without too much clutter. It also means that one can plug in one’s data-flow language of
choice at any later point. The analysis made here holdsregardlessof the data-flow lan-
guage chosen, not just for one specific data-flow language, and so in effect the analysis
is stronger and more general because of this abstraction1.

The following patterns may look a bit daunting when first presented, but one should
remember that they are not what the workflow user/programmer should see any more
than object calculus terms are what a Java programmer or UML user sees.

1 Afterwards, a similar study could be made with regard to data-flow requirements, and of course
any realistic system should handle both control flow and data flow.

1.1 Why Considerπ-calculus?

The π-calculus and its predecessor CCS (Calculus of Communicating Systems) [10]
have strong mathematical foundations and have been widely studied for years. This
has lead to a plethora of deep theoretical results (see [15] for an overview) as well as
applications in programming languages (e.g. PICT [13]), protocol verification, software
model checking (e.g. Zing [1, 20]), hardware design languages2, and several other areas.

Workflow description languages, it would seem, have a lot in common with these
areas. First, workflows can be thought of as parallel processes. Second, workflows often
defy the block structure found in conventional programming. Third, the prospect of do-
ing formal verification on workflows is very relevant and using a process calculus makes
algebraic reasoning and algebraic transformation immediately possible due to the large
body of research already present. Lastly, although they are somewhat bare in their style,
CCS andπ-calculus enforce a very strong separation of process and application logic
that seems appropriate for workflow modeling.

On the other hand process calculi are highly theoretical constructs that require a
great deal of expert knowledge. Workflow description systems should be accessible to
anyone possessing a knowledge of the workflow domain being modeled, and so a signif-
icant challenge lies in bridging this gap. In particular providing understandable graph-
ical tools and user-friendly abstractions constitutes a pivotal challenge ifπ-calculus-
based systems are to succeed.

In the same vein a fair concern to raise is whether the level of formalism inπ-
calculus is necessary considering how graphical systems today are already difficult to
understand both for users and programmers. First, usingπ-calculus does not preclude
a high-level graphical representation, and clearly more research into this area is war-
ranted. Second, a rigorous foundation remains necessary, because we strive to under-
stand systemsbeforewe implement them. A well-tested, well-understood foundation
will make implementation and subsequent adaptation easier and more routine.

A major strength of theπ-calculus is its ability to express passing of channels be-
tween nodes and the ability to pass processes (in the higher-orderπ-calculus, which can
be translated down to regularπ-calculus). This far, however, only few examples exist
that put this capability to use in the workflow domain. It may turn out, though, that
channel-passing (and possibly locality) will become highly relevant when addressing
service infrastructure and actual implementation of workflow tasks. By choosingπ-
calculus we stand a better chance of finding a unified foundation for business systems
programming.

In terms of practical workflow managementπ-calculus promises seamless integra-
tion between workflow systems and existing verification tools (model checking [3, 8],
behavior types/conformance checking [14, 9] etc.). For the end-user this means access
to verification tools that will make writing and adapting workflows faster and less error-
prone.

In our view it is important that future business systems are built not only to carry
out a specific task, but in a way that makes them amenable to automatic source code
manipulation and formal verification, and to attain this goal it is desireable to have a
small and rigorously defined core model.

2 In a sense, a microprocessor is one huge workflow system.

What we are seeking is not a formalism to use as it is, but the formalism that will
provide the most suitable underpinning for future work.

1.2 Contributions

This paper demonstrates how CCS can be used as a foundation for workflow modeling.
More specifically, the contributions are:

1. A CCS encoding of the 20 patterns in Table 1 as suggested in Challenge 6.
2. An brief analysis of the 20 patterns, and a description and encoding of two new

patterns:(8a) N-out-of-M Mergeand(16a) Deferred Multiple Choice.
3. A presentation of a speculativeoverlayoperator and its use for certain workflow

scenarios.
4. A short discussion of using CCS vs.π-calculus for workflow description languages.

The challenges suggest usingπ-calculus. It is our opinion that the foundation should
be kept as simple as possible, and this research has in fact shown that CCS is sufficient
for the purposes of the current workflow patterns.

1.3 Outline

In Section 2 we introduce the particular variant of CCS used throughout the paper.
Section 3 offers a brief analysis of the workflow patterns as well as an encoding of the 20
common workflow pattern and the two newly identified ones. Section 3 also introduces
theoverlayoperator. Section 4 discusses future directions, and Section 5 puts the paper
in the context of related work. Section 6 contains a few concluding remarks.

2 Modeling Workflows in CCS

In this paper we will use the CCS syntax defined by the following BNF:

P ::= 0
∣∣ τ.P

∣∣ a?x.P
∣∣ a!x.P

∣∣ P + P
∣∣ (P | P)

∣∣ new a P
∣∣ a?∗x.P

0 is the empty process,τ is some unobservable transition,a!x anda? try to send and
receive on channela, + is choice,| runs processes in parallel,new a P protects the
channela from communication outsideP , anda?∗x.P spawns the processP each time a
message is received ona. The syntax allows unguarded choice but guards all replicated
processes with an input prefix (a?∗). For simplicity we often writea?x instead ofa?x.0,
and we may omit the namex if it is irrelevant in the context. Capital letters, usuallyP ,
Q, R, denote processes, and small letters,a, b, c, . . . denote activities. Internal messages
are words in small letters, likeok andgo.

The invocation of an activitya can be encoded asa!.a? denoting a simple re-
quest/response mechanism. More sophisticated protocols for monitoring activity progress
can be added, but for this paper the statuses started/finished will suffice. Often ifa is a
workflow activity we will simply writea for a!.a?. This will make the workflow activi-
ties easier to separate out from the internal message passing.

The non-determinism inherent in CCS should not be considered a problem; rather
it is a convenient and elegant method of abstracting from implementation details, ap-
plication logic or user input. The expressionτ.P + τ.Q could be abstraction over a
data-dependent choice to be made by the system or the decision of a human being.

3 The Workflow Patterns

In this section we consider each of the 20 workflow patterns in turn, discuss their en-
coding in CCS, and present new patterns. To facilitate comparison the discussion is
structured according to the taxonomy given in [18] (see Table 1), and the pattern de-
scriptions are taken verbatim from [19] with minor clarifications in square brackets.

Basic Control Patterns

1 Sequence
2 Parallel Split
3 Synchronization
4 Exclusive Choice
5 Simple Merge

Advanced Branching and
Synchronization Patterns

6 Multiple Choice
7 Synchronizing Merge
8 Multiple Merge

8a N-out-of-M Merge(new)
9 Discriminator

9a N-out-of-M Join

Patterns Involving Multiple Instances

12 MI without synchronization
13 MI with a priori known design time knowledge
14 MI with a priori known runtime knowledge
15 MI with no a priori runtime knowledge

Structural Patterns

10 Arbitrary Cycles
11 Implicit Termination

Cancellation Patterns

19 Cancel Activity
20 Cancel Case

State-Based Patterns

16 Deferred Choice
16a Deferred Multiple Choice(new)
17 Interleaved Parallel Routing
18 Milestone

Table 1.The 20 Workflow Patterns [19] and Two New Ones

A central part of any workflow formalism is that of splitting the control flow into
several possible paths and later joining control flow from different places into fewer
paths. This is addressed by theBasic Control Patterns, the Advanced Branching and
Synchronization Patterns, and to a certain extent thePatterns Involving Multiple In-
stances, theDeferred Choicepattern, and theInterleaved Parallel Routingpattern.

A structured view of these patterns proves beneficial. Consider Table 2 for an over-
view of Split, Synchronize, and Merge patterns. Split patterns split one path into some
m paths. The difference between the split patterns is whether they require control flow
to enter onlyonepath (choice),somepaths (multiple choice) orall paths (parallel split).

The same trichotomy is useful when considering synchronization and merging. Syn-
chronization waits for a number of signals (one, some or all) and then launches one
continuation, whereas merge spawns a continuation for each received signal (at most
one, at most some number or for all).

Two new patterns emerge from this exercise:(16a) Deferred Multiple Choiceand
(8a) N-out-of-M Merge. These are described and coded below.

More generally, one could give every join construct a predicate that dynamically
decided when to continue. If equipped with some simple constructs for writing such
predicates, the language becomes much more expressive than the patterns here, but for
analysis purposes it is very important that the predicates remain within the boundaries
of Presburger arithmetic or some other (preferably simpler) first-order theory in which
all statements are decidable.

Split Synchronize Merge
All Parallel Split 1 → m/m Synchronizationm/m → 1 Multiple Merge m/m → m

One Exclusive
Choice

1 → 1/m - Simple Merge 1/m → 1

Deferred Choice 1 → 1/m Discriminator 1/m → 1 -
SomeMultiple Choice 1 → n/m Synch. Merge n/m → 1 Multiple Merge n/m → n

Deferred
Multiple Choice

1 → n/m N-out-of-M Join n/m → 1 N-out-of-M
Merge

n/m → n

Table 2.Split, Synchronize, and Merge Patterns.l → n/m means “control flows froml path(s)
to n out ofm possible paths”.n/m → l means “control flows fromn of m possible paths intol.

In the following pattern encodings some internal message-passing is often used for
synchronization purposes. Such internal messages, likedone, ok, start, andgo, should
be concealed to outside expressions through use of thenew operator. Except for the
first example, we tacitly assume their existence to avoid cluttering the expressions.

Pattern 1. Sequence– execute activities in sequence.The first encoding that comes to
mind is a.P , but unfortunately this does not do the job completely. It is desirable to
be able to put two arbitrary processes after each other likeP.Q. A simple solution is
provided by Milner [10]: We require all processes to send on an agreed-upon channel,
saydone!, when they are done and the encoding of the sequenceP.Q then becomes

new go ({go/done}P | go?.Q)

where{go/done}P is an alpha-conversion that is handled statically on source code level.
Henceforth we will use the simpler notationPgo to signify thatP signals on channelgo
on completion and that all pre-existing freeoks in P have been alpha converted. If the
channel is not relevant, it will be omitted. ut

Pattern 2. Parallel Split – execute activities in parallel.

P1 | · · · | Pn ut

Pattern 3. Synchronization– synchronize two parallel threads of execution.

P1,ok | · · · | Pn,ok | ok?. · · · .ok?︸ ︷︷ ︸
n

.R
ut

Pattern 4. Exclusive Choice– choose one execution path from many alternatives.

τ.P1 + · · · + τ.Pn

Theτ transition prefix on each branch allows a data-dependent decision or active deci-
sion; that is, the system can decide upon a particular branch (and do away with all other
branches) without immediately activating the activities of that branch (cf.(16) Deferred
Choice). In future patterns involving choice theτ prefix will be omitted unless needed.

ut

Pattern 5. Simple Merge– merge two alternative execution paths.

(P1,ok + · · · + Pn,ok) | ok?∗.R

The pattern assumes (unnecessarily for our purpose) that none of the processesPi are
ever run in parallel. This assumption is expressed here by the use of+. ut

Pattern 6. Multiple Choice – choose several execution paths from many alternatives.
A simple encoding would be

(τ.P1 + 0) | · · · | (τ.Pn + 0)

but this (a) does not enforce a minimum number of activities to be executed and (b)
does not explicitly tell if the system is still waiting for a choice to be made or already
decided to take the0 branch. Addressing (b) we get

(τ.P1 + lazy!) | · · · | (τ.Pn + lazy!)

where the system outside should then accept messages on channelsok andlazy appro-
priately. Addressing (a) amounts to requiring some number ofPis to be started before
the system is able to perform rendez-vous onlazy. To avoid cluttering up the expres-
sion, we do not do this here. ut

Pattern 7. Synchronizing Merge– merge many execution paths. Synchronize if many
paths are taken. Simple merge if only one execution path is taken.

(P1,ok + ok!) | · · · | (Pn,ok + ok!) | ok?. · · · .ok?︸ ︷︷ ︸
n

.Q

All Pi perform anok! when they are done so the synchronization mechanism guarding
Q should wait for exactlyn such messages. ut

Pattern 8. Multiple Merge – merge many execution paths without synchronizing.

(P1,ok + lazy!) | · · · | (Pn,ok + lazy!) | ok?∗.Q | lazy?∗

Signalsok! andlazy! signify if an activity was executed or not. Notice that other pro-
cesses may connect to the merge by using the named entry-pointok. If this in undesired
in the context, anew ok can be added around the expression. Additionally, any occur-
rences ofok in Q should be removed by alpha conversion. ut

New Pattern 8a. N-out-of-M Merge– merge many execution paths without synchro-
nizing, but only execute subsequent activity the firstn times. Remaining incoming branches
are ignored.

(P1,ok + lazy!) | · · · | (Pn,ok + lazy!) | ok?.go! | · · · | ok?.go!︸ ︷︷ ︸
n

| go?∗.Q | lazy?∗

The pattern is similar toMultiple Mergeexcept that it is only capable of receivingn
messages onok and then it is done. ut

Pattern 9. Discriminator – merge many execution paths without synchronizing. Exe-
cute the subsequent activity only once.

(P1,ok + lazy!) | · · · | (Pn,ok + lazy!) | ok?.(Q | lazy?∗ | ok?∗)

Here theMultiple Choicepattern is used but other split patterns could be used too. The
first signal onok initiatesQ and all remaining signal are consumed. Contrary to Petri
nets, ignoring all future signals is not a problem because any loop around this construct
would simply instantiate a new process (with new channel names) in each iteration.ut

Pattern 9a. N-out-of-M Join – merge many execution paths. Perform partial synchro-
nization and execute subsequent activity only once.

(P1,ok + lazy!) | · · · | (Pn,ok + lazy!) | ok?.ok?︸ ︷︷ ︸
n

.(Q | lazy?∗ | ok?∗)

For the purpose of this demonstration, the pattern is combined withMultiple Choice
pattern. Oncen messages are received onok, the processQ is activated and all remain-
ing messages, whetherok or lazy, are discarded. ut

Pattern 10. Arbitrary Cycles – execute workflow graph w/out any structural restric-
tion on loops.Consider the following example from [19]:

.

.

a b c d e

Merge

Merge

XOR

XOR

Since activitiesb andc have multiple merge points that do not originate from the
same split block, it is necessary to promote them to named services (or “functions”) by

using the replication operator – a lot like what one would do in any structured program-
ming language. Here we name themgob andgoc and the example becomes

a.gob! | gob?∗.b.goc! | (goc?∗.c.(gob! + d.(goc! + e))). ut

Pattern 11. Implicit Termination – terminate if there is nothing to be done.
Implicit termination means detecting if all processes have come to a stable state

and there are no pending activities or messages. In other words if the residual workflow
process – disregarding subexpressions of the forma?∗.P – is structurally congruent to0.
Subexpression of the forma?∗.P can be thought of as functions; they cannot and should
not be reduced. Any active invocations of such a function will manifest themselves as
some reduced form of the bodyP . (However, if a function listens on a channel that
cannot be reached by the active process expression, it may be garbage collected by the
runtime system, but this is separate from detecting implicit termination.)

Explicit termination was modeled in theSequencepattern where we adopted the
convention that all processes signal on a pre-determined channel on completion. When
the top-level expression wishes to send its signal, the process explicitly terminates.ut

Pattern 12. MI without synchronization – generate many instances of one activity
without synchronizing them afterwards.

P.loop! | loop?∗.(create!.loop! + R) | create?∗.Q

After processP finishes an arbitrary number of instances ofQ are spawned and once
no moreQs need to be started,R is executed. Execution ofR does not wait for the
completion of any of the instances ofQ. The choice inside the loop can be anExclusive
Choiceor aDeferred Choice. ut

Pattern 13. MI with a priori known design time knowledge – generate many in-
stances of one activity when the number of instances is known at the design time (with
synchronization).

create!. · · · .create!︸ ︷︷ ︸
n

. ok?. · · · .ok?︸ ︷︷ ︸
n

.Q | create?∗.Pok

This pattern creates exactlyn instances ofP and waits for all of them to complete
before passing control on to the processQ. ut

Pattern 14. MI with a priori known runtime knowledge – generate many instances
of one activity when a number of instances can be determined at some point during
the runtime (as in FOR loop but in parallel).First a counter is needed to keep track
of the number of instances that need to be synchronized. It can be coded (a) directly
in CCS through cunning use of thenew operator (cf. sect. 7.5 of [10]), (b) by adding
a notion of simple datatypes such as integers to CCS or (c) by using channel-passing
π-calculus style. For now we will just add a processCounter and not bother with its
implementation details; the important part being that is it feasible in CCS.Counter

has the ability to receive messages on channelinc (increase) and to send message on
channelsdec (decrease) orzero (check if zero) depending on its state:

P.loop! | loop?∗.(create!.loop! + break!) | create?∗.inc!.Qok

| break?∗.(ok?.dec?.break! + zero?.R) | Counter

From P the process enters a loop where multiple instances ofQ are created. Once
creation is done, the process iterates thebreak loop until a message onzero is received,
i.e. 0 instances remain. Notice that one can decide not to create any instances at all., if
one desires a minimum number of processes to be spawned, thebreak! prefix should
be guarded by unfolding thecreate loop an appropriate number of times. ut

Pattern 15. MI with no a priori runtime knowledge – generate many instances of
one activity when a number of instances cannot be determined (as in WHILE loop but
in parallel). This pattern is merely a simplified version of pattern 14. There is no longer
a need to distinguish between the creation phase and the synchronization phase. Hence
it collapses to:

P.loop! | loop?∗.(create!.loop! + ok?.dec?.loop! + zero?.R) | create?∗.inc!.Qok

| Counter

More advanced synchronization schemes can be plugged in at this place. Maybe only
somn instances need to finish, maybe the completion condition is some predicateρ
over the data produced so far. In other words, the logic deciding this loop can be pushed
up to a data-aware layer or handled through more complex join conditions in the process
expression. ut

Pattern 16. Deferred Choice– execute one of the two alternatives threads. The choice
which thread is to be executed should be implicit.

P1 + · · · + Pn where each subprocess is guarded.

This is very similar to theExclusive Choice. Here the choice is made exactly when a
(non-silent) transition of either of thePis occurs, and hence we require allPi to be
guarded. In theExclusive Choicewe might haveτ.P + τ.Q to signify that an abstract
upper-layer would decide which branch to follow (i.e. whatτ transition to take). ut

New Pattern 16a. Deferred Multiple Choice– execute several of the many alternative
threads. The choice of which threads are to be executed should be implicit.The impor-
tant question here is: how do we know when the users are done choosing the threads?
Two approaches are possible: (a) we fix ann number of threads to be activated or (b)
we set up a virtual activity that means “all desired threads have been started, remove
remaining choices”. Option (a) requires all subprocesses to emit a signal on activation
and consumen such signals before activating alazy?∗process to remove the remaining
branches. Here we follow option (b):

(P1 + lazy!) | · · · | (Pn + lazy!) | donechoosing.lazy?∗

Firstly, this pattern cannot be obtained by combination of severalDeferred Choice Pat-
terns. For instance, the expression(A.(B+donechoosing)+B.(A+donechoosing)+
donechoosing), does not allow the second activity to be started before the first one is
done. ut

Pattern 17. Interleaved Parallel Routing– execute two activities in random order, but
not in parallel.

new lock, unlock, locked, unlocked (lock!.P1.unlock! | · · · | lock!.Pn.unlock!
| (unlocked? ∗ .lock?.locked! | locked? ∗ .unlock?.unlocked! | unlocked!))

This is generalized slightly from two to any finite number of interleavings. Each process
Pi acquires the lock on activation and releases it upon termination. ut

Pattern 18. Milestone– enable an activity until a milestone is reached.Assume that
processQ can only be enabled afterP has finished and only beforeR is started. This
is done by the help of a small flag that can be changed usingset! andclear! and tested
usingison? andisoff?:

Milestone(ison, isoff , set, clear) = on?∗.(ison!.off ! + set?.on! + clear?.off !) |
off?∗.(isoff !.off ! + set?.on! + clear?.off !) | off !

Now the milestone can be set up as

P.set!.clearR | ison?∗.Q | Milestone

whereclearR denotes the modification of processR that signals onclear when it starts
its first activity or makes its first explicit choice. ut

Pattern 19. Cancel Activity – cancel (disable) an enabled activity.Suppose there are
activitiesa, b, andc being carried out in sequential order. Anytime during the execution
of activity b the process can be cancelled. We break up activityb into b!.b? so it will be
clear exactly when a cancellation can be accepted. Assume cancellation is obtained by
signaling on channelcancel:

a.b!.(b?.c + cancel?) ut

Pattern 20. Cancel Case– cancel (disable) the process.The example of this pattern
given at [19] is an online travel reservation system. If the reservation for a plane ticket
fails, then all pending reservations for flights, hotel, car rental, etc. in the itinerary must
be cancelled immediately to avoid unnecessary work.

Intuitively, this corresponds to returning to some predefined state in the system after
relinquishing all resources and information bound in the current context. In this respect
the cancellation patterns look at lot like a program exceptions, and indeed the cancella-
tion pattern can be coded in CCS by using a source code transformation.

Pattern 19 showed how to insert a cancellation point a one particular spot in a pro-
cess. We now insert cancellation points for all states in the processa.b.c to obtain

a!.(a?.(b!.(b?.(c!.(c?+cancel?)+cancel?)+cancel?)+cancel?)+cancel?)+cancel?

Clearly this becomes very tedious and strongly suggests that a more abstract language
would be useful. ut

3.1 Towards a Workflow Description Language Based on CCS

As could be expected the workflow patterns coded in the previous sections clearly show
that CCS is too low-level to be used directly as a workflow language, and that certain
patterns are very cumbersome to write.

A natural idea is to design a language out of small building blocks of each of the
patterns seen to far. The language SMAWL, presented in the related paper [16] seeks to
reduce the amount of user-specified internal synchronization mechanisms and provide
elegant constructs for the 22 workflow patterns while maintaining a strong link to CCS.
The example in Figure 1 based on [19] shows what a workflow specification might look
like in SMAWL along with an automatically generated graphical representation.

workflow Become a recording star=
chooseone{

⇒ call (Work your way up)
⇒ call (Try to get lucky)

};
Make record;
doall {

⇒ chooseone{
⇒ Develop as an artist
⇒ Develop bad habits
}

⇒ Rehearse tour;
Do tour

}
end

Choose one (1)

Call Try to get lucky Call Work your way up

Sync (1)

Make record

Do all (3)

Rehearse tour Choose one (5)

Sync (3)

Do tour

Develop bad habits Develop as artist

Sync (5)

Fig. 1.How To Become a Recording Star (adapted from theRecording Starexample[19])

3.2 Challenge 4 and the Overlay Operator

What remains is a tiny – somewhat speculative – improvement of the expressive power
of CCS. Consider the Petri net in Figure 2. The Petri net exhibits a pattern that is cum-
bersome to express without a lot of internal message-passing because it defies the block
structure of the workflow patterns.

The Petri net can be mimicked in CCS through use of function definitions and ex-
plicit message-passing, but more interestingly it can be expressed elegantly using the
overlay operator& defined by the rules in Figure 3. The operator is somewhat inspired

.

.

• a

b c d

e f g

h

Fig. 2.Challenge 4 [17]

by the|| operator found in CSP [7]. The operator is perhaps best explained by coding
the example in Figure 2:

C4 = a.(b.c.d|e.f.g).h & (c|e).f

WheneverC4 wants to transition on a channel that is mentioned in both operands to
the & operator, both operands have to agree to this. If a transition is only mentioned
in one of the operands, the& operator has no effect on that transition. Here ifa, e was
performed first, the left process would be ready to dof but the right would not, since it
would needc to complete first.

The operator is very interesting because it allows the overlaying of global business
rules to all processes. E.g. one might have a rule that says “delivery shall occur before
invoicing”. This rule would now simply be enforced on all workflows by overlaying it
with the workflows. Also, the workflow designers do not have to describe all business
rules because the can simply overlay the global rules to their workflows.

The operator can be built into the reduction rules of a workflow system, or it can
be translated down to regular CCS, which, unfortunately, can generate an exponential
blowup in expression size.

P
α−→ P ′ α /∈ ports(Q)

P&Q
α−→ P ′&Q

(+sym.)
P

α−→ P ′ Q
α−→ Q′

P&Q
α−→ P ′&Q′

Fig. 3.Reduction Rules for the Overlaying Operator &

4 Discussion and Future Work

Challenges 4–7 were to (4) model the Petri net shown in Figure 2, (6) model existing
patterns, (5) provide new challenges, and (7) suggest new patterns (especially using
mobility).

We have modeled existing patterns and in doing so identified two new patterns. The
two new patterns(16a) Deferred Multiple Choiceand(8a) N-out-of-M Mergeshould be

expressed in Petri nets, and likewise it would be interesting to see if Petri nets can handle
the overlaying operator more elegantly than CCS. An investigation into the pratical
applicability of the overlaying operator& might prove very fruitful.

Also notice how we can express variants of existing patterns, e.g. we can combine
deferred and non-deferred choices (it is not clear if this is possible using the current
patterns).

π-calculus mobility was not needed. Essentially, workflow systems deal with the
flow of command/control and not as much the channels for exchanging messages, if one
desires to shift focus to the flow of data—and in particular which channels are used for
this—then maybeπ-calculus is appropriate. As noted previously it would seem that the
π-calculus notion of mobility would be convenient for modeling service infrastructure
and implementation of actual workflow tasks.

When debating expressiveness an easy, but vacuous point is Turing completeness.
Indeed, both Petri nets and CCS are Turing complete, but in their raw form they are un-
suited for any non-trivial programming/modeling task. For domain-specific languages
it would seem more reasonable to consider criteria such as (a) ontological fit (ie. do-
main closeness, convenience of expressing common idioms), (b) expressiveness, (c)
amenability to formal analysis, (c) simplicity, and, for workflow languages, (d) graphi-
cal representation.

It remains extremely important to provide an intuitive graphical user interface and
easily understandable high-level abstractions for the user, and this should be addressed
in future work. For a demonstration of how to provide a more high-level syntax refer to
the workflow language SMAWL [16].

To explore expressiveness properly, it would be interesting to put all the languages
into a formal semantic framework. For workflows, the idea of representing workflows as
sets of allowable traces CSP-style seems reasonable and will provide a common ground
for comparison. First the patterns should be described in a more formal fashion and then
the expressiveness of Petri nets, CCS, CSP, temporal logic and others can be compared
using e.g. Felleisen characterization of expressiveness [5]3.

5 Related Work

Dong and Shensheng presented their encoding of some of the patterns in an unpublished
paper in 2004 [4]. Their encodings differ a great deal from the ones presented here, but
more fundamentally they use the channel-passing facility ofπ-calculus, whereas the
encodings here do not and thus can be expressed in CCS. In our view the language
should be as simple as possible, and as we have demonstrated, the full power ofπ-
calculus is not needed. Also, staying within CCS makes the patterns more amenable to
use in the tools current available. Furthermore the Join-calculus would seem interesting
[6].

Numerous attempts to map Petri nets to process calculi exist. Also an effort to merge
the best of both worlds exists (cf. Petri Box Calculus [2]).

3 Quoting Felleisen [5]: . . . “more expressive” means that the translation of a program with oc-
currences of one of the constructsci to the smaller language requires a global reorganization
of the entire program.

6 Conclusion

The purpose of this paper was to show that workflow patterns in fact can be expressed
in CCS. We demonstrated how to code challenges 4 and 6 and identified new patterns.

The response to challenges 5 and 7 is necessarily this: The coding of the 20 pat-
terns has provided no compelling reasons to use the channel-passing mechanism of
π-calculus. We see no need for the notion of mobility found inπ-calculus for workflow
systems. Workflow systems abstract away from the actual channels of delivery. Maybe
π-calculus is relevant when analyzing the interaction between agents and clients inside
the workflow activities.

In remains open if the newly discovered patterns occur often enough in pratical
settings to warrant their incorporation with the rest. Real world examples to support
them would be very valuable – especially for the overlaying operator.

References

1. Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, and Yichen Xie. Zing: Exploiting pro-
gram structure for model checking concurrent software. In Philippa Gardner and Nobuko
Yoshida, editors,CONCUR, volume 3170 ofLecture Notes in Computer Science, pages 1–
15. Springer, 2004.

2. Eike Best, Raymond Devillers, and Maciej Koutny.Petri Net Algebra. Monographs on
theoretical computer science. Springer, 2001.

3. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state con-
current system using temporal logic specifications: a practical approach. InPOPL ’83:
Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 117–126. ACM Press, 1983.

4. Yang Dong and Zhang Shensheng. Modeling workflow patterns with pi-calculus. Unpub-
lished. Available from http://www.workflow-research.de.

5. Matthias Felleisen. On the expressive power of programming languages.Science of Com-
puter Programming, 1990.

6. Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the
join-calculus. InProceedings of the 23rd ACM Symposium on Principles of Programming
Languages, pages 372–385, St. Petersburg Beach, Florida, January 21-24 1996. ACM.

7. C.A.R. Hoare.Communicating Sequential Processes. International Series in Computer Sci-
ence. Prentice-Hall, 1985.

8. Michael R. A. Huth and Mark Ryan.Logic in computer science: modelling and reasoning
about systems. Cambridge University Press, 2000.

9. Naoki Kobayashi. Type systems for concurrent programs. In Bernhard K. Aichernig and
T. S. E. Maibaum, editors,10th Anniversary Colloquium of UNU/IIST, volume 2757 ofLec-
ture Notes in Computer Science, pages 439–453. Springer, 2002.

10. Robin Milner.Communication and Concurrency. International Series in Computer Science.
Prentice-Hall, 1989.

11. Robin Milner.Communicating and Mobile Systems: Theπ-calculus. Cambridge University
Press, 1999.

12. High-level Petri nets – concepts, definitions and graphical notation, final draft international
standard ISO/IEC 15909, May 2002. Version 4.7.3.

13. Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the pi-
calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors,Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, 2000.

14. Sriram K. Rajamani and Jakob Rehof. Conformance checking for models of asynchronous
message passing software. In Ed Brinksma and Kim Guldstrand Larsen, editors,CAV, vol-
ume 2404 ofLecture Notes in Computer Science, pages 166–179. Springer, 2002.

15. D. Sangiorgi and D. Walker.Theπ-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

16. Christian Stefansen. SMAWL: A SMAll Workflow Language based on CCS. InProceedings
of the CAiSE Forum of the 17h Conference on Advanced Information Systems Engineering,
June 2005.

17. W.M.P. van der Aalst. Pi calculus versus Petri nets: Let us eat ”hum-
ble pie” rather than further inflate the ”Pi hype”. Available from
http://tmitwww.tm.tue.nl/research/patterns/download/pi-hype.pdf, 2004.

18. W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow patterns: On the expressive power
of (petri-net-based) workflow languages. In K. Jensen, editor,Proceedings of the Fourth
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2002), volume
560, Aarhus, Denmark, August 2002. DAIMI.

19. Workflow patterns. Available from http://www.workflowpatterns.com.
20. The Zing model checker. Available from http://research.microsoft.com/zing/.
21. Michael zur Muehlen. Workflow research. http://www.workflow-research.de.

