
1

Yale University, Feb. 3rd, 2006 1

A Declarative Framework for Enterprise Systems

Christian Stefansen

Yale University, Feb. 3, 2006

Yale University, Feb. 3rd, 2006 2

Abstract

This talk sketches some recent research toward a declarative
process-based framework for ERP systems. In particular, the talk
describes the following two areas:

(1) A declarative language for compositional specification of
contracts governing the exchange of resources. The language
extends Eber and Peyton Jones’s declarative language for specifying
financial contracts to the exchange of money, goods and services
amongst multiple parties, and it complements McCarthy’s
Resources, Events and Agents (REA) accounting model with a view-
independent formal contract model that supports definition of user-
defined contracts, automatic monitoring under execution, and user-
definable analysis of their state before, during and after execution.

(2) A pi-calculus encoding of common workflow control patterns,
which leads to a pi-calculus-based macro language for workflow
specification. The encodings presented here demonstrate some of
the strengths and weaknesses of pi-calculus for business process
formalization vis a vis Petri nets and concrete languages such as
BPEL and YAWL.

2

Yale University, Feb. 3rd, 2006 3

The NEXT Research Group

• NEXT generation Enterprise Resource Planning (ERP)
systems

• ”The over-all goal of the project is to develop software
technology and methods for development of the next
generation of business management systems for
companies. These systems are often referred to as ERP-
systems (ERP: Enterprise Resource Planning) even though
today they comprise much more than resource planning.”

• Fritz Henglein Kasper Østerbye
Henrik Reif Andersen Peter Carstensen
Peter Sestoft Yvonne Dittrich
Rune Møller Jensen

Yale University, Feb. 3rd, 2006 4

What Is an Enterprise System?

• Usually centered around a general ledger, enterprise
systems handle business by supporting:

• Accounts payable/receivable

• Inventory, assets, projects, resource allocation

• Employees, workflows, tasks

• Customer relations

• Supply-chain management, logistics

3

Yale University, Feb. 3rd, 2006 5

The Goal

• To be able to write, automate, analyze and
monitor business processes in a service-
oriented architecture.

• Current systems (SAP, PeopleSoft, Axapta, Siebel,
Great Plains, Compiere) are not process-oriented:

• ad hoc-integration between modules,

• do not expose and share processes with the
environment,

• do not support mobility.

Yale University, Feb. 3rd, 2006 6

The Project

• Design a process-oriented programming platform.

• Processes, constraints, and rules

• Data model

• Reporting and monitoring

4

Yale University, Feb. 3rd, 2006 7

Compositional Commercial Contracts

Jesper Andersen Ebbe Elsborg

Fritz Henglein Jakob Grue Simonsen

Christian Stefansen

Yale University, Feb. 3rd, 2006 8

Parts of a Contract

• Definitions
(define parties, nature and quality of exchanged resources,
legal context, exception handlers etc.)

• Temporal/logic structure

• The good news: We can express temporal properties
formally.

• The bad news: Probably cannot eliminate the need for
lawyers altogether!

5

Yale University, Feb. 3rd, 2006 9

Paper-Based Contract-Handling is Costly

• No formal representation results in:

• Manual handling in auxiliary systems

• Ad hoc deadline management

• Ambiguous semantics

• Time-consuming valuation

• Cannot report on future events

• No coordination with production planning or supply-
chain management

• Missed opportunities (call options etc.)

• Potential benefits of formal representation:

• Alleviate the problems above

• Several consistency checks at time of writing contract

• (Semi-)automated contract analysis (incl. valuation)
(DSL programs are in a sense ”intelligent data”)

Yale University, Feb. 3rd, 2006 10

We Analyzed 15 Full-Length Contracts

• Data model

• Structure

6

Yale University, Feb. 3rd, 2006 11

Example: Agreement to Provide Legal
Services

• Section 1. The attorney shall provide, on a non-exclusive
basis, legal services up to (n) hours per month, and
furthermore provide services in excess of (n) hours upon
agreement.

• Section 2. In consideration hereof, the company shall pay a
monthly fee of (amount in dollars) before the 8th day of the
following month and (rate) per hour for any services in
excess of (n) hours 40 days after the receival of an invoice.

• Section 3. This contract is valid 1/1-12/31, 2008.

Yale University, Feb. 3rd, 2006 12

Primitives in Contracts

• Data

• Agents

• Resources (goods, services, rights)

• Commitments/Events

• Time

• Structure

• Sequential execution

• Concurrent execution

• Repeated execution

• Alternative execution (choice between subcontracts)

7

Yale University, Feb. 3rd, 2006 13

Syntax

Yale University, Feb. 3rd, 2006 14

Example: Legal Agreement Code

8

Yale University, Feb. 3rd, 2006 15

When Is a Contract Satisfied?

• Contracts denote sets of finite traces. A trace is a
finite sequence of events:

s ::= <> | transmit(a1,a2,r,t) s

• So contracts classify a given trace as performing or
nonperforming. Formally:

Yale University, Feb. 3rd, 2006 16

The Satisfaction Relation

• How about Failure? (Exercise for the audience)

• Note that the base language is orthogonal to this.
Just plug in your own.

9

Yale University, Feb. 3rd, 2006 17

From the Satisfaction Relation to
Denotational Semantics

• Denotational semantics, e.g.:

• Theorem: Denotational characterization of
satisfaction

Yale University, Feb. 3rd, 2006 18

Toward Contract Execution

• We need a representation of residual contracts in
order to monitor execution.

• For a trace set S and an event e, define the
residuation function as:

10

Yale University, Feb. 3rd, 2006 19

Residual Contracts Should Be Expressible

• Let Sc denote the trace set of contract c.

• Not immediately clear if e\Sc is denotable by a
contract (syntactical expression) c’

• But this is clearly a normative property!

Yale University, Feb. 3rd, 2006 20

Not All Residuals Are Representable

Assume event transmit(a1, a2, r, 0) occurs.

We therefore introduce guardedness, a sufficient condition to
ensure that all contracts have a syntactic representation of
the residual contract under any event.

11

Yale University, Feb. 3rd, 2006 21

Guarded Contracts

• Intuitively, a contract is guarded if (mutual)
recursive calls are prefixed by a transmit.

Yale University, Feb. 3rd, 2006 22

Several Operational Semantics

• Now that guarded contracts are representable, we
can attempt defining an operational semantics to
govern contract rewriting. We defined three inter-
related semantics:

• Non-deterministic eager matching

• Deterministic eager matching with explicit routing

• Deterministic reduction by delayed matching

12

Yale University, Feb. 3rd, 2006 23

Deterministic Reduction with Delayed
Matching

• Consider some of the reduction rules:

Yale University, Feb. 3rd, 2006 24

Guardedness Ensures Safe Residuation

• Guarded Subject Reduction:

• Now we reap the benefits of compositionality: all
residual contracts have syntactical representations and
can be submitted to analysis etc.

13

Yale University, Feb. 3rd, 2006 25

Example Reduction

Yale University, Feb. 3rd, 2006 26

Example Reduction - Step 2

14

Yale University, Feb. 3rd, 2006 27

Contract Analysis

• Compositional and thus available at runtime too!

• Wish to answer questions ranging from simple (what
is my current todo list?) to complex (what is the
current value of the contract based on my stochastic
model?)

• Particularly important analysis: Failure, i.e. does the
contract have no satisfying traces.

Yale University, Feb. 3rd, 2006 28

Expressing Workflows in a Process Calculus

(or finding a good representation if one does not already exist)

Work in progress...

15

Yale University, Feb. 3rd, 2006 29

What Are Workflows?

• ”A business process is a collection of interrelated
work tasks, initiated in response to an event, that
achieves a specific result for the customer of the
process.”
-- Sharp and McDermott

• A tendency to consider workflows a subset of

business processes

• But I have not yet found (or needed) a workable,
rigorous distinction.

Yale University, Feb. 3rd, 2006 30

Why Formal Workflows?

• Ad hoc workflow handling:

• Error-prone (no guidance)

• Significant training needed

• Lends itself badly to analysis and change

• Formal representation of workflows:

• Alleviate the above

• Execution model (computers can execute workflows)

• Static and runtime consistency checks

• Lends itself well to oursourcing, service-oriented
architecture, and partial automation

16

Yale University, Feb. 3rd, 2006 31

Why Formal Workflows?

• Users

• can easily adhere to established best practice

• know what tasks kan be dealt with now/later

• receive help to delegate tasks appropriately

• need only local knowledge about the tasks they solve
(as opposed to global knowledge about the entire workflow)

• Designers/planners

• can more easily map out and change processes

• can introduce structure along the way (ad hoc)

• can perform formal analysis on workflows

• can partially automate outsourcing etc.

• Controllers

• gain finer registration of resource consumption (e.g. time) and thus
costs (get Activity-Based Costing for free)

• can carry out performance analysis more easily

Yale University, Feb. 3rd, 2006 32

..but this is Taylor’s Scientific Management
all over again!

• Workflows can be as freeform or as rigid as one
designs them.

• The simplest workflow is just a completely
unstructured task list.

• Workflow can be adaptive, starting with the
completely unstructured workflow first and imposing
structured constraints over time.

17

Yale University, Feb. 3rd, 2006 33

Do Workflows Have A Semantics?

• No widely accepted semantics so far.

• Studies by Aalst et al. proposed:

• 20 control-flow patterns
(parallel, sequence, choice, repetition etc.)

• 39 data patterns
(scope, call-by regime, parameters etc.)

• 43 resource patterns (delegation)
(implicit, queue, role, case, quality check)

• The patterns are:

• imprecise (no clear semantics)

• overlapping (patterns overlap in non-obvious ways)

• too inclusive (maybe ”goto”-type patterns should be eliminated)

• non-exhaustive (easy to think of more patterns, but a proper
language should be defined instead)

Today’s topic

Yale University, Feb. 3rd, 2006 34

The 20 Control-Flow Patterns

18

Yale University, Feb. 3rd, 2006 35

Some Patterns

Pattern 1: SequencePattern 1: SequencePattern 1: SequencePattern 1: Sequence
Execute activities in sequence.

Pattern 6: Multiple ChoicePattern 6: Multiple ChoicePattern 6: Multiple ChoicePattern 6: Multiple Choice
Choose several execution paths from
many alternatives.

...
Mult

Pattern 13: Multiple Instances [...] Pattern 13: Multiple Instances [...] Pattern 13: Multiple Instances [...] Pattern 13: Multiple Instances [...]
Generate many instances of one activity
[...] with synchronization.

Pattern 7: Synchronizing MergePattern 7: Synchronizing MergePattern 7: Synchronizing MergePattern 7: Synchronizing Merge
Merge many execution paths.
Synchronize if many paths are taken.
[...] Merge if only one [...] path is taken.

...
Synch.merge

Yale University, Feb. 3rd, 2006 36

More Patterns

Cancel

Pattern 20: Cancel CasePattern 20: Cancel CasePattern 20: Cancel CasePattern 20: Cancel Case
Cancel (disable) the process)

Merge

Merge

Choice

Choice

Pattern 10: Arbitrary CyclesPattern 10: Arbitrary CyclesPattern 10: Arbitrary CyclesPattern 10: Arbitrary Cycles
Execute workflow graph without any
structural restriction on loops.

Pattern 16: Deferred ChoicePattern 16: Deferred ChoicePattern 16: Deferred ChoicePattern 16: Deferred Choice
Execute one of two alternative threads.
The choice [...] should be implicit.

Def’d

19

Yale University, Feb. 3rd, 2006 37

• Pattern 1: Sequence

• a.P – not general enough

• P.Q – not syntactic

• Require processes to signal termination explicitly on a
designated channel, e.g. ok

• new go (P [go/ok] | go?.Q)

Calculus of Communicating Systems

• CCS syntax:

Atomic tasks are simply written as a,b,c etc.

QP

Yale University, Feb. 3rd, 2006 38

Example Encoding

• Pattern 7/9: Multiple Choice/Discriminator

• (τ.P1 + τ.skip!) | … | (τ.Pn + τ.skip!) |
ok?.(Q | skip?*.0 | ok?*.0)

...
Mult

P1

Pn

...
Disc

Q

20

Yale University, Feb. 3rd, 2006 39

Example Encoding

• Pattern 10: Arbitrary Cycles

• new gob, goc
(a.gob! | gob?*.b.goc! |
goc?*.c.(gob! + d.(goc! + e))

a b c d e
Merge

Merge

Choice

Choice

• What if Merge was Sync. Merge?What if Merge was Sync. Merge?What if Merge was Sync. Merge?What if Merge was Sync. Merge?

Yale University, Feb. 3rd, 2006 40

Observations on the patterns

• Split and join are separate / Free structure
Patterns have graph-type structure (YAWL, Petri nets, WFDL) as
opposed to block structure (XLANG, parts of BPEL)

• Deferred vs. explicit choice
Branching time semantics may be needed

• Many split and join variants seem better
expressed by simple data-language

• Cancellation
Neither Petri nets nor pi-calculus handle this very well. LOTOS and
CSP have operators for this.

• Multiple Instances needed
Generativity essential

21

Yale University, Feb. 3rd, 2006 41

Synch. Merge Has Non-Local Semantics

• Workarounds
1. Integrate with split-end pattern

(thus loosing free-form property)

2. Decide runtime
(thus loosing some static checks)

3. Pass around meta-information from previous split(s)
(thus complicating distribution and introducing
complexity, also insufficient in degenerate cases)

Workflow-
mønstre

KontrakterIntro

REA

SMAWL

Afslutning

Kodning

CDL Arkitektur

Synch.merge

Yale University, Feb. 3rd, 2006 42

More Issues

• Semantics of Discriminator is unclear
(but can be well-defined)

• Can tasks be cancelled?
(sure, tasks can be processes too!)

• Multiple Instances combine several other patterns
(split, join, and repetition)

• Synch, Merge and Sequence overlap somewhat
subtly

22

Yale University, Feb. 3rd, 2006 43

A Formal Semantics for the Patterns?

• More precise benchmarking of workflow languages

• Should be model independent (not Petri net, π, EPC)

• Should split and join be separated or not?

(and how about Multiple Instances?)

• Should all patterns be covered? Directly or by data-
manipulation language?

• How to compare expressiveness? Felleisen-style?

Yale University, Feb. 3rd, 2006 44

SMAWL – a SMAll Workflow Language

• Preliminary language design exercise

• Design criteria:
• Cover all 20 patterns (and more!)

• Minimize need for synchronization primitives

• Retain strong link to pi/CCS

• Independent of data patterns
(Allows orthogonal data manipulation language to be
plugged in.)

• Method
• Collect patterns in a few, general constructions

• Describe a source-code transformation to pi/CCS

23

Yale University, Feb. 3rd, 2006 45

A Workflow in SMAWL

Workflow-
mønstre

KontrakterIntro

REA

SMAWL

Afslutning

Kodning

CDL

Arkitektur

workflowworkflowworkflowworkflow Q =
Intro;
choose anychoose anychoose anychoose any {

⇒ Workflowmønstre;
Kodning;
SMAWL

⇒ Kontrakter;
CDL

⇒ REA
};
Arkitektur;
Afslutning

endendendend

Yale University, Feb. 3rd, 2006 46

SMAWL Syntax

24

Yale University, Feb. 3rd, 2006 47

Britney Wants to Sing

Yale University, Feb. 3rd, 2006 48

Transforming SMAWL to CCS

• Sequence

• Multiple Instances

25

Yale University, Feb. 3rd, 2006 49

Future Research on Workflows

• Set up success criteria for process model and data-
manipulation language

• Formal semantics for workflows

• Consider distributed workflows

• Find/adapt/design suitable process calculus

• Implement a workflow language

Yale University, Feb. 3rd, 2006 50

A Process-Oriented System Architecture

(Highly speculative)

26

Yale University, Feb. 3rd, 2006 51

Future: A Process-Oriented Framework

Processes

Reports/monitors

Logevents

observations

push/pull

environment

•Process language
•Base (data) language
•Service patterns
•Auto. GUI-generation

•Data model
•Process mining
•Inter-operability (ontology)

•Runtime verification
•Incrementalization of reports
•Stream processing
•Dynamic operator placement in overlay networks

Yale University, Feb. 3rd, 2006 52

Ongoing NEXT Projects

• Finite Differencing for Realtime Reporting

• REA Bookkeeping
(Double-entry bookkeeping is not the only option)

• Plan X: Value-Based Programming

27

Yale University, Feb. 3rd, 2006 53

Related Work

• Concurrency models

• Process calculi (CCS, pi, CSP, Bigraphs)

• Petri nets

• BPEL – Business Process Execution Language

• YAWL – Yet Another Workflow Language
Petri net-based workflow tool. Ostensibly covers all
20 control-flow patterns.

• WS-CDL - Choreography Description Language
In particular, see Kohei Honda’s recent stuff on
behavioral type systems.

Yale University, Feb. 3rd, 2006 54

Related Work

• Transactors: a programming model for maintaining
globally consistent distributed state in unreliable
environments
John Field and Carlos Varela, POPL ’05

• PiDuce – a project for experimenting with web services
technologies

Samuele Carpineti, Cosimo Laneve, Luca Padovani, Jan.
2006

• Compositional Contracts
Peyton Jones, Eber, Seward, 2001

• Also see: http://www.process-modelling-group.org/

28

Yale University, Feb. 3rd, 2006 55

Q&A and thanks!

• Thank you for hosting me!

• Questions?

• More info on:

http://www.stefansen.dk

http://www.it.edu/next/

